Spaces:
Sleeping
Sleeping
import gradio as gr | |
from joblib import load | |
from skimage.transform import resize | |
from skimage.color import rgb2gray | |
import numpy as np | |
classifier = load('knn_classifier.joblib') | |
def predict_image(image): | |
if len(image.shape) == 3: | |
image = rgb2gray(image) | |
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento | |
image = (image * 255).astype(np.uint8) | |
#image = np.array(image, dtype = np.float64) | |
image = np.invert(image) | |
image = image.reshape(1,-1) | |
prediction = classifier.predict(image) | |
return prediction[0] | |
with gr.Blocks() as demo: | |
txt = gr.Textbox(label = "Input", lines =2) | |
txt_2 = gr.Textbox(label = "Input 2") | |
txt_3 = gr.Textbox(value = "", label = "Output") | |
btn = gr.Button(value = "submit") | |
btn.click(combine, inputs = [txt, txt_2]), outputs = [txt_3] | |
with gr.Row(): | |
im = gr.Image() | |
im_2 = gr.Image() | |
btn = gr.Button(value = "Mirror image") | |
btn.click(mirror, inputs = [im], outputs = [im_2]) | |
gr.Markdown("## Image Examples") | |
gr.Examples( | |
examples=[os.path.join(os.path.dirname(__file__), "0.png")], | |
inputs=im, | |
outputs=im_2, | |
fn=mirror, | |
cache_examples=True, | |
) | |
imagenes_muestra =[ | |
"knnExample/0.png" | |
"knnExample/5.png" | |
"knnExample/7.png" | |
] | |
iface = gr.Interface( | |
fn = predict_image, | |
inputs = gr.inputs.Image(type = "file", label = "Sube tu Imagen o Selecciona una de Ejemplo"),#"image", | |
outputs = "text", | |
examples = imagenes_muestra | |
) | |
iface.launch(debug=True) |