File size: 3,438 Bytes
cdd4621 1e8d05a 615f871 cdd4621 db73e21 cdd4621 db73e21 cdd4621 1e8d05a db73e21 1e8d05a db73e21 1e8d05a db73e21 cdd4621 1e8d05a 7bc8b30 db73e21 7bc8b30 db73e21 7bc8b30 cdd4621 7bc8b30 db73e21 7bc8b30 cdd4621 7bc8b30 cdd4621 7bc8b30 db73e21 64614f4 7bc8b30 64614f4 cdd4621 8079fc6 1e8d05a 7bc8b30 8079fc6 1e8d05a cdd4621 db73e21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import os
# Load the trained model once
model = tf.keras.models.load_model("my_keras_model.h5")
image_size = (224, 224) # Ensure consistent image size
# Function to analyze injury severity
def analyze_injury(prediction):
if prediction < 0.3:
return "Mild", "Rest and pain relief.", "₹2,000 - ₹5,000", "₹10,000 - ₹20,000"
elif 0.3 <= prediction < 0.7:
return "Moderate", "Plaster cast or minor surgery.", "₹8,000 - ₹15,000", "₹30,000 - ₹60,000"
else:
return "Severe", "Major surgery with metal implants.", "₹20,000 - ₹50,000", "₹1,00,000+"
# Function to generate report
def generate_report(patient_name, age, gender, xray1_path, xray2_path):
if not os.path.exists(xray1_path) or not os.path.exists(xray2_path):
return "Error: One or both X-ray images are missing!"
try:
# Process X-ray 1
img1 = Image.open(xray1_path).resize(image_size).convert("RGB")
img_array1 = image.img_to_array(img1)
img_array1 = np.expand_dims(img_array1, axis=0) / 255.0
prediction1 = model.predict(img_array1)[0][0]
# Process X-ray 2
img2 = Image.open(xray2_path).resize(image_size).convert("RGB")
img_array2 = image.img_to_array(img2)
img_array2 = np.expand_dims(img_array2, axis=0) / 255.0
prediction2 = model.predict(img_array2)[0][0]
# Get final analysis
avg_prediction = (prediction1 + prediction2) / 2
predicted_class = "Fractured" if avg_prediction > 0.5 else "Normal"
severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction)
# Generate PDF Report
report_path = f"{patient_name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
c.setFont("Helvetica", 12)
c.drawString(100, 750, f"Patient Name: {patient_name}")
c.drawString(100, 730, f"Age: {age}")
c.drawString(100, 710, f"Gender: {gender}")
c.drawString(100, 690, f"Diagnosis: {predicted_class}")
c.drawString(100, 670, f"Injury Severity: {severity}")
c.drawString(100, 650, f"Recommended Treatment: {treatment}")
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
c.save()
if os.path.exists(report_path):
return report_path
else:
return "Error: Report generation failed!"
except Exception as e:
return f"Error generating report: {str(e)}"
# Define Gradio Interface
interface = gr.Interface(
fn=generate_report,
inputs=[
gr.Textbox(label="Patient Name"),
gr.Number(label="Age"),
gr.Radio(["Male", "Female", "Other"], label="Gender"),
gr.Image(type="filepath", label="Upload X-ray Image 1"),
gr.Image(type="filepath", label="Upload X-ray Image 2"),
],
outputs=gr.File(label="Download Report"),
title="Bone Fracture Detection & Medical Report",
description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
)
if __name__ == "__main__":
interface |