File size: 3,438 Bytes
cdd4621
 
 
 
 
1e8d05a
 
615f871
cdd4621
db73e21
cdd4621
db73e21
cdd4621
1e8d05a
 
 
db73e21
1e8d05a
db73e21
1e8d05a
db73e21
cdd4621
1e8d05a
7bc8b30
db73e21
 
 
7bc8b30
 
db73e21
7bc8b30
 
 
cdd4621
7bc8b30
db73e21
7bc8b30
 
 
cdd4621
7bc8b30
 
 
 
cdd4621
7bc8b30
 
 
 
 
 
 
 
 
 
 
 
 
 
db73e21
 
 
 
64614f4
7bc8b30
 
64614f4
cdd4621
 
8079fc6
 
 
 
1e8d05a
7bc8b30
 
8079fc6
 
1e8d05a
 
cdd4621
 
 
db73e21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import os

# Load the trained model once
model = tf.keras.models.load_model("my_keras_model.h5")
image_size = (224, 224)  # Ensure consistent image size

# Function to analyze injury severity
def analyze_injury(prediction):
    if prediction < 0.3:
        return "Mild", "Rest and pain relief.", "₹2,000 - ₹5,000", "₹10,000 - ₹20,000"
    elif 0.3 <= prediction < 0.7:
        return "Moderate", "Plaster cast or minor surgery.", "₹8,000 - ₹15,000", "₹30,000 - ₹60,000"
    else:
        return "Severe", "Major surgery with metal implants.", "₹20,000 - ₹50,000", "₹1,00,000+"

# Function to generate report
def generate_report(patient_name, age, gender, xray1_path, xray2_path):
    if not os.path.exists(xray1_path) or not os.path.exists(xray2_path):
        return "Error: One or both X-ray images are missing!"

    try:
        # Process X-ray 1
        img1 = Image.open(xray1_path).resize(image_size).convert("RGB")
        img_array1 = image.img_to_array(img1)
        img_array1 = np.expand_dims(img_array1, axis=0) / 255.0  
        prediction1 = model.predict(img_array1)[0][0]

        # Process X-ray 2
        img2 = Image.open(xray2_path).resize(image_size).convert("RGB")
        img_array2 = image.img_to_array(img2)
        img_array2 = np.expand_dims(img_array2, axis=0) / 255.0  
        prediction2 = model.predict(img_array2)[0][0]

        # Get final analysis
        avg_prediction = (prediction1 + prediction2) / 2
        predicted_class = "Fractured" if avg_prediction > 0.5 else "Normal"
        severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction)

        # Generate PDF Report
        report_path = f"{patient_name}_fracture_report.pdf"
        c = canvas.Canvas(report_path, pagesize=letter)
        c.setFont("Helvetica", 12)
        c.drawString(100, 750, f"Patient Name: {patient_name}")
        c.drawString(100, 730, f"Age: {age}")
        c.drawString(100, 710, f"Gender: {gender}")
        c.drawString(100, 690, f"Diagnosis: {predicted_class}")
        c.drawString(100, 670, f"Injury Severity: {severity}")
        c.drawString(100, 650, f"Recommended Treatment: {treatment}")
        c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
        c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
        c.save()

        if os.path.exists(report_path):
            return report_path
        else:
            return "Error: Report generation failed!"

    except Exception as e:
        return f"Error generating report: {str(e)}"

# Define Gradio Interface
interface = gr.Interface(
    fn=generate_report,
    inputs=[
        gr.Textbox(label="Patient Name"),
        gr.Number(label="Age"),
        gr.Radio(["Male", "Female", "Other"], label="Gender"),
        gr.Image(type="filepath", label="Upload X-ray Image 1"),
        gr.Image(type="filepath", label="Upload X-ray Image 2"),
    ],
    outputs=gr.File(label="Download Report"),
    title="Bone Fracture Detection & Medical Report",
    description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
)

if __name__ == "__main__":
    interface