|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" |
|
|
|
import gradio as gr |
|
import tensorflow as tf |
|
import numpy as np |
|
from tensorflow.keras.preprocessing import image |
|
from PIL import Image |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.pdfgen import canvas |
|
from reportlab.lib import colors |
|
from reportlab.platypus import Table, TableStyle |
|
|
|
|
|
model = tf.keras.models.load_model("my_keras_model.h5") |
|
|
|
|
|
with open("templates/re.html", "r", encoding="utf-8") as file: |
|
html_content = file.read() |
|
|
|
|
|
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))] |
|
|
|
|
|
def generate_report(name, age, gender, weight, height, allergies, cause, xray): |
|
image_size = (224, 224) |
|
|
|
def predict_fracture(xray_path): |
|
img = Image.open(xray_path).resize(image_size) |
|
img_array = image.img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array)[0][0] |
|
return prediction |
|
|
|
|
|
prediction = predict_fracture(xray) |
|
diagnosed_class = "normal" if prediction > 0.5 else "Fractured" |
|
|
|
|
|
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe" |
|
|
|
|
|
treatment_data = [ |
|
["Severity Level", "Recommended Treatment", "Recovery Duration"], |
|
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"], |
|
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"], |
|
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"] |
|
] |
|
|
|
|
|
cost_duration_data = [ |
|
["Hospital Type", "Estimated Cost", "Recovery Time"], |
|
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"], |
|
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"] |
|
] |
|
|
|
|
|
img = Image.open(xray).resize((300, 300)) |
|
img_path = f"{name}_xray.png" |
|
img.save(img_path) |
|
|
|
|
|
report_path = f"{name}_fracture_report.pdf" |
|
c = canvas.Canvas(report_path, pagesize=letter) |
|
|
|
|
|
c.setFont("Helvetica-Bold", 16) |
|
c.drawString(200, 770, "Bone Fracture Detection Report") |
|
|
|
|
|
patient_data = [ |
|
["Patient Name", name], |
|
["Age", age], |
|
["Gender", gender], |
|
["Weight", f"{weight} kg"], |
|
["Height", f"{height} cm"], |
|
["Allergies", allergies if allergies else "None"], |
|
["Cause of Injury", cause if cause else "Not Provided"], |
|
["Diagnosis", diagnosed_class], |
|
["Injury Severity", severity] |
|
] |
|
|
|
|
|
def format_table(data): |
|
table = Table(data, colWidths=[270, 270]) |
|
table.setStyle(TableStyle([ |
|
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue), |
|
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), |
|
('ALIGN', (0, 0), (-1, -1), 'CENTER'), |
|
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), |
|
('BOTTOMPADDING', (0, 0), (-1, 0), 12), |
|
('GRID', (0, 0), (-1, -1), 1, colors.black), |
|
('VALIGN', (0, 0), (-1, -1), 'MIDDLE') |
|
])) |
|
return table |
|
|
|
|
|
patient_table = format_table(patient_data) |
|
patient_table.wrapOn(c, 480, 500) |
|
patient_table.drawOn(c, 50, 620) |
|
|
|
|
|
c.drawInlineImage(img_path, 50, 320, width=250, height=250) |
|
c.setFont("Helvetica-Bold", 12) |
|
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}") |
|
|
|
|
|
treatment_table = format_table(treatment_data) |
|
treatment_table.wrapOn(c, 480, 200) |
|
treatment_table.drawOn(c, 50, 200) |
|
|
|
cost_table = format_table(cost_duration_data) |
|
cost_table.wrapOn(c, 480, 150) |
|
cost_table.drawOn(c, 50, 80) |
|
|
|
c.save() |
|
|
|
return report_path |
|
|
|
|
|
def use_sample_image(sample_image_path): |
|
return sample_image_path |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.HTML(html_content) |
|
gr.Markdown("## Bone Fracture Detection System") |
|
|
|
with gr.Row(): |
|
name = gr.Textbox(label="Patient Name") |
|
age = gr.Number(label="Age") |
|
gender = gr.Radio(["Male", "Female", "Other"], label="Gender") |
|
|
|
with gr.Row(): |
|
weight = gr.Number(label="Weight (kg)") |
|
height = gr.Number(label="Height (cm)") |
|
|
|
with gr.Row(): |
|
allergies = gr.Textbox(label="Allergies (if any)") |
|
cause = gr.Textbox(label="Cause of Injury") |
|
|
|
with gr.Row(): |
|
xray = gr.Image(type="filepath", label="Upload X-ray Image") |
|
|
|
with gr.Row(): |
|
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image") |
|
select_button = gr.Button("Load Sample Image") |
|
|
|
submit_button = gr.Button("Generate Report") |
|
output_file = gr.File(label="Download Report") |
|
|
|
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray]) |
|
|
|
submit_button.click( |
|
generate_report, |
|
inputs=[name, age, gender, weight, height, allergies, cause, xray], |
|
outputs=[output_file], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |