ftx7go's picture
Update app.py
1e8d05a verified
raw
history blame
3.3 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import os
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Define image size based on the model's input requirement
image_size = (224, 224)
# Function to analyze injury severity
def analyze_injury(prediction):
if prediction < 0.3:
severity = "Mild"
treatment = "Rest, pain relievers, and follow-up X-ray."
gov_cost = "₹2,000 - ₹5,000"
private_cost = "₹10,000 - ₹20,000"
elif 0.3 <= prediction < 0.7:
severity = "Moderate"
treatment = "Plaster cast or splint; possible minor surgery."
gov_cost = "₹8,000 - ₹15,000"
private_cost = "₹30,000 - ₹60,000"
else:
severity = "Severe"
treatment = "Major surgery with metal implants, extensive physiotherapy."
gov_cost = "₹20,000 - ₹50,000"
private_cost = "₹1,00,000+"
return severity, treatment, gov_cost, private_cost
# Function to generate report
def generate_report(patient_name, age, gender, xray1, xray2):
# Process X-ray 1
img1 = Image.open(xray1).resize(image_size)
img_array1 = image.img_to_array(img1)
img_array1 = np.expand_dims(img_array1, axis=0) / 255.0
prediction1 = model.predict(img_array1)[0][0]
# Process X-ray 2
img2 = Image.open(xray2).resize(image_size)
img_array2 = image.img_to_array(img2)
img_array2 = np.expand_dims(img_array2, axis=0) / 255.0
prediction2 = model.predict(img_array2)[0][0]
# Get final analysis
avg_prediction = (prediction1 + prediction2) / 2
predicted_class = "Fractured" if avg_prediction > 0.5 else "Normal"
severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction)
# Generate PDF
report_path = f"{patient_name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
c.setFont("Helvetica", 12)
c.drawString(100, 750, f"Patient Name: {patient_name}")
c.drawString(100, 730, f"Age: {age}")
c.drawString(100, 710, f"Gender: {gender}")
c.drawString(100, 690, f"Diagnosis: {predicted_class}")
c.drawString(100, 670, f"Injury Severity: {severity}")
c.drawString(100, 650, f"Recommended Treatment: {treatment}")
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
c.save()
return report_path
# Define Gradio Interface
interface = gr.Interface(
fn=generate_report,
inputs=[
gr.Textbox(label="Patient Name"),
gr.Number(label="Age"),
gr.Radio(["Male", "Female", "Other"], label="Gender"),
gr.Image(type="file", label="Upload X-ray Image 1"),
gr.Image(type="file", label="Upload X-ray Image 2"),
],
outputs=gr.File(label="Download Report"),
title="Bone Fracture Detection & Medical Report",
description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()