ftx7go's picture
Update app.py
752f355 verified
raw
history blame
4.31 kB
import os
import smtplib
import ssl
from email.message import EmailMessage
# Force TensorFlow to use CPU
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Store generated report paths
report_paths = {}
# Function to send email
def send_email(patient_email, patient_name):
if patient_name not in report_paths or not os.path.exists(report_paths[patient_name]):
return "Error: Generate the report first before sending."
report_path = report_paths[patient_name]
sender_email = "[email protected]"
sender_password = "your_email_password"
subject = f"Bone Fracture Report for {patient_name}"
body = f"Dear {patient_name},\n\nYour bone fracture diagnosis report is attached.\n\nBest Regards,\nHospital Team"
msg = EmailMessage()
msg["From"] = sender_email
msg["To"] = patient_email
msg["Subject"] = subject
msg.set_content(body)
# Attach PDF
with open(report_path, "rb") as file:
msg.add_attachment(file.read(), maintype="application", subtype="pdf", filename=os.path.basename(report_path))
# Send email securely
context = ssl.create_default_context()
with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server:
server.login(sender_email, sender_password)
server.send_message(msg)
return f"Report sent successfully to {patient_email}!"
# Function to generate report
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
if not name:
return "Error: Please enter a patient name."
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
# Predict fracture
prediction = predict_fracture(xray)
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
# Generate PDF
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
# Save X-ray image for report
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
c.save()
# Store file path for sending email
report_paths[name] = report_path
return report_path # Return file path
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name")
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies")
cause = gr.Textbox(label="Cause of Injury")
with gr.Row():
email = gr.Textbox(label="Patient Email", type="email")
# Preloaded X-ray image
default_xray_path = "default_xray.png" # Ensure this file exists in your project
xray = gr.Image(type="filepath", label="Upload X-ray Image", value=default_xray_path)
with gr.Row():
submit_button = gr.Button("Generate Report")
send_email_button = gr.Button("Send Report via Email")
output_file = gr.File(label="Download Report")
# Generate Report Button
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, allergies, cause, xray],
outputs=[output_file]
)
# Send Email Button
send_email_button.click(
send_email,
inputs=[email, name],
outputs=[gr.Textbox(label="Status")]
)
# Launch app
if __name__ == "__main__":
app.launch()