gabri14el's picture
Create app.py
12ac236
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 3 18:31:26 2022
@author: gabri
"""
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
import cv2
import requests
from PIL import Image
import matplotlib.cm as cm
# import matplotlib.pyplot as plt
models_links = {
'xception':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%205/pesos.h5',
'resnet':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%209/pesos.h5',
'efficientnet':'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%2010/pesos.h5'}
model_weights = {
}
model_last_convolutional_layer = {
'xception':'block14_sepconv2_act',
'resnet':'conv5_block3_3_conv',
'efficientnet':'top_conv'}
classes = ['Códega', 'Moscatel Galego', 'Rabigato', 'Tinta Roriz', 'Tinto Cao', 'Touriga Nacional']
# functions for inference
target_size_dimension = 300
def define_model(model):
weights = get_weights(model)
if model == 'efficientnet':
preprocessing_function=tf.keras.applications.efficientnet.preprocess_input
model = tf.keras.applications.EfficientNetB3(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
elif model == 'resnet':
preprocessing_function=tf.keras.applications.resnet_v2.preprocess_input
model = tf.keras.applications.resnet_v2.ResNet101V2(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
else:
preprocessing_function=tf.keras.applications.xception.preprocess_input
model = tf.keras.applications.Xception(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
x = tf.keras.layers.Dense(512, activation='relu')(model.output)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Dense(512, activation='relu')(x)
x = tf.keras.layers.Dropout(0.25)(x)
output = tf.keras.layers.Dense(6, activation='softmax')(x)
nmodel = tf.keras.models.Model(model.input, output)
nmodel.load_weights(weights)
return preprocessing_function, nmodel
def get_weights(model):
if not model in model_weights:
r = requests.get(models_links[model], allow_redirects=True)
open(model+'.h5', 'wb').write(r.content)
model_weights[model] = model+'.h5'
return model_weights[model]
def get_img_array(img_path, size, expand=True):
# `img` is a PIL image of size 299x299
img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
# `array` is a float32 Numpy array of shape (299, 299, 3)
array = tf.keras.preprocessing.image.img_to_array(img)
# We add a dimension to transform our array into a "batch"
# of size (1, 299, 299, 3)
if expand:
array = np.expand_dims(array, axis=0)
return array
def make_gradcam_heatmap(img_array, grad_model, last_conv_layer_name, pred_index=None, tresh=0.1):
# First, we create a model that maps the input image to the activations
# of the last conv layer as well as the output predictions
#grad_model = tf.keras.models.Model(
#[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
#)
# Then, we compute the gradient of the top predicted class for our input image
# with respect to the activations of the last conv layer
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# This is the gradient of the output neuron (top predicted or chosen)
# with regard to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient
# over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the top predicted class
# then sum all the channels to obtain the heatmap class activation
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
heatmap = heatmap.numpy()
return heatmap
def save_and_display_gradcam(img, heatmap, cam_path="cam.jpg", alpha=0.4):
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
im = Image.fromarray(heatmap)
im = im.resize((img.shape[1], img.shape[0]))
im = np.asarray(im)
im = np.where(im > 0, 1, im)
# Use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * alpha + img
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
# Save the superimposed image
#superimposed_img.save(cam_path)
# Display Grad CAM
#display(Image(cam_path))
return superimposed_img, im
def infer(model_name, input_image):
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$')
print(model_name, type(input_image))
preprocess, model = define_model(model_name)
#img = get_img_array(input_image, (target_size_dimension, target_size_dimension))
img_processed = preprocess(np.expand_dims(input_image, axis=0))
predictions = model.predict(img_processed)
predictions = np.squeeze(predictions)
result = {}
for i in range(len(classes)):
result[classes[i]] = float(predictions[i])
#predictions = np.argmax(predictions) # , axis=2
#predicted_label = classes[predictions.item()]
print(input_image.shape)
model.layers[-1].activation = None
grad_model = tf.keras.models.Model([model.inputs], [model.get_layer(model_last_convolutional_layer[model_name]).output, model.output])
print(result)
heatmap = make_gradcam_heatmap(img_processed, grad_model,model_last_convolutional_layer[model_name])
heat, mask = save_and_display_gradcam(input_image, heatmap)
return result, heat
gr.outputs.Image()
# get the inputs
css = css = ".output-image, .input-image, .image-preview {height: 300px !important}"
inputs = [gr.Radio(["resnet", "efficientnet", "xception"], label='Choose a model'), gr.inputs.Image(shape=(target_size_dimension, target_size_dimension), label='Select an image')]
# the app outputs two segmented images
output = [gr.outputs.Label(label="Result"), gr.outputs.Image(type="numpy", label="Heatmap (Grad-CAM)")]
# it's good practice to pass examples, description and a title to guide users
examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]]
title = "Grapevine image classification"
description = "Upload an image to classify it. The allowed classes are - Códega, Moscatel Galego, Rabigato, Tinta Roriz, Tinto Cao, Touriga Nacional <p><b>Space author: Gabriel Carneiro</b> <br><b> [email protected] </b> </p>"
gr_interface = gr.Interface(infer, inputs, output, allow_flagging=False, analytics_enabled=False, css=css, title=title, description=description).launch(enable_queue=True, debug=False)
#gr_interface.launch()