summarization / README.md
gagan3012's picture
Update README.md
e33c23a
|
raw
history blame
3.98 kB
---
title: T5S
emoji: πŸ’―
colorFrom: yellow
colorTo: red
sdk: streamlit
app_file: src/visualization/visualize.py
pinned: false
---
<h1 align="center">t5s</h1>
T5 Summarisation Using Pytorch Lightning
[![pypi Version](https://img.shields.io/pypi/v/t5s.svg?logo=pypi&logoColor=white)](https://pypi.org/project/t5s/)
[![Downloads](https://static.pepy.tech/personalized-badge/t5s?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/t5s)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co/spaces/gagan3012/summarization)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/summarization/blob/master/notebooks/t5s.ipynb)
## Usage
To use and run the DVC pipeline install the `t5s` package
```
pip install t5s
```
Firstly we need to clone the repo containing the code so we can do that using:
```
t5s clone
```
We would then have to create the required directories to run the pipeline
```
t5s dirs
```
Then we need to pull the models from DVC
```
t5s pull
```
Now to run the training pipeline we can run:
```
t5s run
```
Finally to push the model to DVC
```
t5s push
```
To push this model to HuggingFace Hub for inference you can run:
```
t5s push_to_hf_hub
```
Next if we would like to test the model and visualise the results we can run:
```
t5s visualize
```
And this would create a streamlit app for testing
Project Organization
------------
β”œβ”€β”€ LICENSE
β”œβ”€β”€ Makefile <- Makefile with commands like `make dirs` or `make clean`
β”œβ”€β”€ README.md <- The top-level README for developers using this project.
β”œβ”€β”€ data
β”‚Β Β  β”œβ”€β”€ processed <- The final, canonical data sets for modeling.
β”‚Β Β  └── raw <- The original, immutable data dump.
β”‚
β”œβ”€β”€ models <- Trained and serialized models, model predictions, or model summaries
β”‚
β”œβ”€β”€ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β”‚ the creator's initials, and a short `-` delimited description, e.g.
β”‚ `1.0-jqp-initial-data-exploration`.
β”œβ”€β”€ references <- Data dictionaries, manuals, and all other explanatory materials.
β”‚
β”œβ”€β”€ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
β”‚Β Β  └── metrics.txt <- Relevant metrics after evaluating the model.
β”‚Β Β  └── training_metrics.txt <- Relevant metrics from training the model.
β”‚
β”œβ”€β”€ requirements.txt <- The requirements file for reproducing the analysis environment
β”‚
β”œβ”€β”€ setup.py <- makes project pip installable (pip install -e .) so src can be imported
β”œβ”€β”€ src <- Source code for use in this project.
β”‚Β Β  β”œβ”€β”€ __init__.py <- Makes src a Python module
β”‚ β”‚
β”‚Β Β  β”œβ”€β”€ data <- Scripts to download or generate data
β”‚Β Β  β”‚Β Β  └── make_dataset.py
β”‚Β Β  β”‚Β Β  └── process_data.py
β”‚ β”‚
β”‚Β Β  β”œβ”€β”€ models <- Scripts to train models
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
β”‚Β Β  β”‚Β Β  └── train_model.py
β”‚Β Β  β”‚Β Β  └── evaluate_model.py
β”‚Β Β  β”‚Β Β  └── model.py
β”‚ β”‚
β”‚Β Β  └── visualization <- Scripts to create exploratory and results oriented visualizations
β”‚Β Β  └── visualize.py
β”‚
β”œβ”€β”€ tox.ini <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc <- Traing a model on the processed data.
--------