mock_interview / app.py
garyd1's picture
Update app.py
e03fb29 verified
raw
history blame
5.03 kB
import gradio as gr
import numpy as np
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import PyPDF2
import sounddevice as sd
import queue
# Load local models for inference
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
# Load a pre-trained model for vector embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Parse PDF and create resume content
def parse_resume(pdf):
"""Extract text from an uploaded PDF file."""
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
sections = {"Resume Content": text}
return sections
# Process job description text
def process_job_description(job_desc):
"""Encode the job description for analysis."""
return embedding_model.encode(job_desc)
# Process resume and generate embeddings
def process_resume(pdf):
resume_content = parse_resume(pdf)
resume_embeddings = {
section: embedding_model.encode(content) for section, content in resume_content.items()
}
return resume_embeddings
# Generate a conversation response
def generate_conversation_response(user_input, job_desc_embedding):
prompt = f"The user said: {user_input}. Respond appropriately as a professional hiring manager. Focus on how the response relates to the job description."
response = conversation_model(prompt, max_length=100, num_return_sequences=1)
return response[0]["generated_text"]
# Generate question from user response
def generate_question(user_input, resume_embeddings, job_desc_embedding):
"""Find the most relevant section in the resume and generate a question."""
user_embedding = embedding_model.encode(user_input)
similarities = {
section: cosine_similarity([user_embedding], [embedding])[0][0]
for section, embedding in resume_embeddings.items()
}
most_relevant_section = max(similarities, key=similarities.get)
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
# Real-time audio recording and processing
def record_audio(callback):
"""Record audio and process it in real-time."""
q = queue.Queue()
def audio_callback(indata, frames, time, status):
if status:
print(status)
q.put(indata.copy())
with sd.InputStream(samplerate=16000, channels=1, callback=audio_callback):
while True:
audio_data = q.get()
callback(audio_data)
# Gradio interface
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
def upload_inputs(self, resume, job_desc):
self.resume_embeddings = process_resume(resume)
self.job_desc_embedding = process_job_description(job_desc)
self.interview_active = True
return "Resume and job description processed. Interview is starting."
def conduct_interview(self, audio_data):
if not self.interview_active:
return "Please upload your resume and job description first.", ""
transcription = stt_model(audio_data)["text"] # Transcribe audio
question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding)
return transcription, question
def end_interview(self):
self.interview_active = False
return "Interview ended. Thank you for participating."
mock_interview = MockInterview()
def upload_inputs(resume, job_desc):
return mock_interview.upload_inputs(resume, job_desc)
def start_interview(audio_data_callback):
"""Start the interview automatically, processing audio in real-time."""
if not mock_interview.interview_active:
return "Please upload your resume and job description first."
def process_audio(audio_data):
transcription, question = mock_interview.conduct_interview(audio_data)
audio_data_callback(transcription, question)
record_audio(process_audio)
interface = gr.Blocks()
with interface:
gr.Markdown("""# Mock Interview AI
Upload your resume and job description, then engage in a realistic interview simulation.""")
with gr.Row():
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
upload_button = gr.Button("Upload and Start Interview")
with gr.Row():
transcription_output = gr.Textbox(label="Transcription")
question_output = gr.Textbox(label="Question")
end_button = gr.Button("End Interview")
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output])
end_button.click(mock_interview.end_interview, outputs=[transcription_output])
if __name__ == "__main__":
interface.launch()