File size: 13,610 Bytes
3f1bb3e
 
 
 
 
 
bd93c04
3f1bb3e
 
1fb67a9
 
3f1bb3e
a134e44
3f1bb3e
 
 
 
 
 
 
 
 
 
 
 
1fb67a9
 
 
 
 
 
 
 
3f1bb3e
1fb67a9
 
3f1bb3e
 
 
 
1fb67a9
 
 
 
 
 
3f1bb3e
 
 
1fb67a9
 
 
 
 
 
 
 
 
 
 
 
a134e44
 
 
 
1fb67a9
8b5e39e
7b5b426
 
 
8b5e39e
 
 
 
 
 
 
 
 
 
0971307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e39e
 
7b5b426
 
 
8b5e39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5b426
 
 
8b5e39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb67a9
 
 
 
 
 
 
 
 
a134e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e39e
 
 
 
 
 
 
 
 
 
 
 
 
1857544
 
 
bd93c04
 
 
 
 
 
 
 
 
 
0971307
 
bd93c04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a134e44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
import numpy as np
from PIL import Image
import cv2 as cv

from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
# from transformers.models.detr.feature_extraction_detr import rgb_to_id
from transformers.image_transforms import rgb_to_id

TEST_IMAGE = Image.open(r"images/9999999_00783_d_0000358.jpg")
MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#######
# Parameters
#######
image = TEST_IMAGE
model_name = MODEL_NAME_MASKFORMER

# Starting with MaskFormer

processor = MaskFormerImageProcessor.from_pretrained(model_name) # <class 'transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor'>
# DIR() --> ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', 
#           '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 
#           '__weakref__', '_auto_class', '_create_repo', '_get_files_timestamps', '_max_size', '_pad_image', '_preprocess', '_preprocess_image', '_preprocess_mask', '_processor_class', 
#           '_set_processor_class', '_upload_modified_files', 'center_crop', 'convert_segmentation_map_to_binary_masks', 'do_normalize', 'do_reduce_labels', 'do_rescale', 'do_resize', 
#           'encode_inputs', 'fetch_images', 'from_dict', 'from_json_file', 'from_pretrained', 'get_image_processor_dict', 'ignore_index', 'image_mean', 'image_std', 'model_input_names', 
#           'normalize', 'pad', 'post_process_instance_segmentation', 'post_process_panoptic_segmentation', 'post_process_segmentation', 'post_process_semantic_segmentation', 'preprocess', 
#           'push_to_hub', 'register_for_auto_class', 'resample', 'rescale', 'rescale_factor', 'resize', 'save_pretrained', 'size', 'size_divisor', 'to_dict', 'to_json_file', 'to_json_string']

model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentation'>
# DIR for model was too big
model.to(DEVICE)

# img = np.array(TEST_IMAGE)

inputs = processor(images=image, return_tensors="pt") # <class 'transformers.image_processing_utils.BatchFeature'>
# DIR() --> ['_MutableMapping__marker', '__abstractmethods__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', 
#           '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', 
#           '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__slots__', '__str__', 
#           '__subclasshook__', '__weakref__', '_abc_impl', '_get_is_as_tensor_fns', 'clear', 'convert_to_tensors', 'copy', 'data', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 
#           'setdefault', 'to', 'update', 'values']
inputs.to(DEVICE)


outputs = model(**inputs) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentationOutput'>
# Each element of this class is a <class 'torch.Tensor'>
# DIR() --> ['__annotations__', '__class__', '__contains__', '__dataclass_fields__', '__dataclass_params__', '__delattr__', '__delitem__', '__dict__', '__dir__', 
#           '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', 
#           '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__post_init__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', 
#           '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'attentions', 'auxiliary_logits', 'class_queries_logits', 'clear', 'copy', 'encoder_hidden_states', 
#           'encoder_last_hidden_state', 'fromkeys', 'get', 'hidden_states', 'items', 'keys', 'loss', 'masks_queries_logits', 'move_to_end', 'pixel_decoder_hidden_states', 
#           'pixel_decoder_last_hidden_state', 'pop', 'popitem', 'setdefault', 'to_tuple', 'transformer_decoder_hidden_states', 'transformer_decoder_last_hidden_state', 
#           'update', 'values']

results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# <class 'dict'>
# Keys: dict_keys(['segmentation', 'segments_info'])
# type(results["segments_info"]) --> list
# type(results["segmentation"]) --> <class 'torch.Tensor'>


def show_mask_for_number(map_to_use, label_id):
    """
    map_to_use: You have to pass in `results["segmentation"]`
    """
    if torch.cuda.is_available():
        mask = (map_to_use.cpu().numpy() == label_id)
    else:
        mask = (map_to_use.numpy() == label_id)
    
    visual_mask = (mask* 255).astype(np.uint8)
    visual_mask = Image.fromarray(visual_mask)
    plt.imshow(visual_mask)
    plt.show()

def show_mask_for_number_over_image(map_to_use, label_id, image_object):
    """
    map_to_use: You have to pass in `results["segmentation"]`
    """
    if torch.cuda.is_available():
        mask = (map_to_use.cpu().numpy() == label_id)
    else:
        mask = (map_to_use.numpy() == label_id)
    
    visual_mask = (mask* 255).astype(np.uint8)
    visual_mask = Image.fromarray(visual_mask)
    plt.imshow(image_object)
    plt.imshow(visual_mask, alpha=0.25)
    plt.show()


def get_coordinates_for_bb_simple(map_to_use, label_id):
    """
    map_to_use: You have to pass in `results["segmentation"]`
    """
    if torch.cuda.is_available():
        mask = (map_to_use.cpu().numpy() == label_id)
    else:
        mask = (map_to_use.numpy() == label_id)
    
    x, y = np.where(mask==True)
    x_max, x_min = max(x), min(x)
    y_max, y_min = max(y), min(y)
    return (x_min, y_min), (x_max, y_max)

def make_simple_box(left_top, right_bottom, map_size):
    full_mask = np.full(map_size, False)
    left_x, top_y = left_top
    right_x, bottom_y = right_bottom
    full_mask[left_x:right_x, top_y] = True
    full_mask[left_x:right_x, bottom_y] = True
    full_mask[left_x, top_y:bottom_y] = True
    full_mask[right_x, top_y:bottom_y] = True

    visual_mask = (full_mask* 255).astype(np.uint8)
    visual_mask = Image.fromarray(visual_mask)
    plt.imshow(visual_mask)
    plt.show()


def test(map_to_use, label_id):
    """
    map_to_use: You have to pass in `results["segmentation"]`
    """
    if torch.cuda.is_available():
        mask = (map_to_use.cpu().numpy() == label_id)
    else:
        mask = (map_to_use.numpy() == label_id)
    
    
    lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
    left_x, top_y = lt
    right_x, bottom_y = rb
    
    mask[left_x:right_x, top_y] = .5
    mask[left_x:right_x, bottom_y] = .5
    mask[left_x, top_y:bottom_y] = .5
    mask[right_x, top_y:bottom_y] = .5

    visual_mask = (mask* 255).astype(np.uint8)
    visual_mask = Image.fromarray(visual_mask)
    plt.imshow(visual_mask)
    plt.show()



# From Tutorial (Box 79)
# def get_mask(segment_idx):
#     segment = results['segments_info'][segment_idx]
#     print("Visualizing mask for:", id2label[segment['label_id']])
#     mask = (predicted_panoptic_seg == segment['id'])
#     visual_mask = (mask * 255).astype(np.uint8)
#     return Image.fromarray(visual_mask)

# How to get ID

"""
>>> model.config.id2label
{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 
13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 
39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 
54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 
68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush', 80: 'banner', 81: 'blanket', 
82: 'bridge', 83: 'cardboard', 84: 'counter', 85: 'curtain', 86: 'door-stuff', 87: 'floor-wood', 88: 'flower', 89: 'fruit', 90: 'gravel', 91: 'house', 92: 'light', 93: 'mirror-stuff', 94: 'net', 95: 'pillow', 
96: 'platform', 97: 'playingfield', 98: 'railroad', 99: 'river', 100: 'road', 101: 'roof', 102: 'sand', 103: 'sea', 104: 'shelf', 105: 'snow', 106: 'stairs', 107: 'tent', 108: 'towel', 109: 'wall-brick', 
110: 'wall-stone', 111: 'wall-tile', 112: 'wall-wood', 113: 'water-other', 114: 'window-blind', 115: 'window-other', 116: 'tree-merged', 117: 'fence-merged', 118: 'ceiling-merged', 119: 'sky-other-merged', 
120: 'cabinet-merged', 121: 'table-merged', 122: 'floor-other-merged', 123: 'pavement-merged', 124: 'mountain-merged', 125: 'grass-merged', 126: 'dirt-merged', 127: 'paper-merged', 128: 'food-other-merged', 
129: 'building-other-merged', 130: 'rock-merged', 131: 'wall-other-merged', 132: 'rug-merged'}
>>> model.config.id2label[123]
'pavement-merged'
>>> results["segments_info"][1]
{'id': 2, 'label_id': 123, 'was_fused': False, 'score': 0.995813}
""" 
# Above labels don't correspond to anything ... https://github.com/nightrome/cocostuff/blob/master/labels.md
# This one was closest to helping: https://github.com/NielsRogge/Transformers-Tutorials/blob/master/MaskFormer/Inference/Inference_with_MaskFormer_for_semantic_%2B_panoptic_segmentation.ipynb

"""
>>> Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
<PIL.Image.Image image mode=L size=2000x1500 at 0x7F07773691C0>
>>> temp = Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
"""

"""
>>> mask = (results["segmentation"].cpu().numpy == 4)
>>> mask = (results["segmentation"].cpu().numpy() == 4)
>>> mask
array([[False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       ...,
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False]])
>>> visual_mask = (mask * 255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0761e78040>
>>> plt.show()
"""

"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask*255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0760298550>
>>> plt.show()
>>> results["segments_info"][0]
{'id': 1, 'label_id': 25, 'was_fused': False, 'score': 0.998022}
>>> 
"""

"""
>>> np.where(mask==True)
(array([300, 300, 300, ..., 392, 392, 392]), array([452, 453, 454, ..., 473, 474, 475]))
>>> max(np.where(mask==True)[0])
392
>>> min(np.where(mask==True)[0])
300
>>> max(np.where(mask==True)[1])
538
>>> min(np.where(mask==True)[1])
399
"""


def contour_map(map_to_use, label_id):
    """
    map_to_use: You have to pass in `results["segmentation"]`
    """
    if torch.cuda.is_available():
        mask = (map_to_use.cpu().numpy() == label_id)
    else:
        mask = (map_to_use.numpy() == label_id)
    
    visual_mask = (mask* 255).astype(np.uint8)
    contours, hierarchy = cv.findContours(visual_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    return contours, hierarchy

"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask* 255).astype(np.uint8)
>>> import cv2 as cv
>>> contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
>>> contours.shape
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'shape'
>>> contours[0].shape
(7, 1, 2)
>>> shrunk = contours[0][:, 0, :]
>>> shrunk
array([[400, 340],
       [399, 341],
       [400, 342],
       [401, 342],
       [402, 341],
       [403, 341],
       [402, 340]], dtype=int32)
>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
((300, 399), (392, 538))
>>> shrunk = contours[1][:, 0, :]
>>> max(shrunk[:, 0])
538
>>> min(shrunk[:, 0])
409
>>> min(shrunk[:, 1])
300
>>> max(shrunk[:, 1])
392
>>> 
"""



"""
import cv2 as cv
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
shrunk = contours[0][:, 0, :]

>>> shrunk[0, :]
array([1907,  887], dtype=int32)
>>> shrunk[:, 0]
array([1907, 1907, 1908, 1908, 1908], dtype=int32)
>>> shrunk[:, 1]
array([887, 888, 889, 890, 888], dtype=int32)
>>> shrunk
array([[1907,  887],
       [1907,  888],
       [1908,  889],
       [1908,  890],
       [1908,  888]], dtype=int32)
"""