File size: 4,862 Bytes
d37571a 4eb325f e47ba0e d37571a 67d953e 4eb325f d37571a 7f13670 d37571a 42314b4 d37571a 4eb325f c50dda1 d37571a 4eb325f d37571a 4eb325f d37571a 4eb325f d37571a 4eb325f d37571a c50dda1 4eb325f c50dda1 4eb325f d37571a 4eb325f d37571a c50dda1 d37571a 4eb325f d37571a 4eb325f d37571a 4eb325f d37571a 4eb325f c50dda1 4eb325f c50dda1 4eb325f d37571a 40781f0 9bcc9ed 40781f0 4eb325f 40781f0 c50dda1 40781f0 c50dda1 40781f0 4eb325f 40781f0 d37571a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
import gradio as gr
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere
# Load credentials from environment variables
WEAVIATE_URL = "vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)
cohere_client = cohere.Client(COHERE_API_KEY)
# Load sentence-transformer model
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def load_pdf(file):
"""Extract text from PDF file."""
reader = PyPDF2.PdfReader(file)
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
def get_embeddings(text):
"""Generate mean pooled embedding for the input text."""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
"""Insert document chunks into Weaviate collection with embeddings."""
doc_collection = client.collections.get("Document")
for chunk in chunks:
embedding = get_embeddings(chunk)
doc_collection.data.insert(
properties={"content": chunk},
vector=embedding.tolist()
)
def query_answer(query):
"""Search for top relevant document chunks based on query embedding."""
query_embedding = get_embeddings(query)
results = client.collections.get("Document").query.near_vector(
near_vector=query_embedding.tolist(),
limit=3
)
return results.objects
def generate_response(context, query):
"""Generate answer using Cohere model based on context and query."""
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
"""Main pipeline for QA: parse PDF, embed chunks, query Weaviate, and generate answer."""
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
top_docs = query_answer(query)
context = ' '.join([doc.properties['content'] for doc in top_docs])
answer = generate_response(context, query)
return context, answer
# Gradio UI
with gr.Blocks(theme="compact") as demo:
gr.Markdown(
"""
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
π Interactive QA Bot π
</div>
<p style="text-align: center; font-size: 16px; color: #4A5568;">
Upload a PDF document, ask questions, and receive answers based on the document content.
</p>
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
"""
)
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="π Upload PDF", file_types=[".pdf"])
query_input = gr.Textbox(label="β Ask a Question", placeholder="Enter your question here...")
submit_button = gr.Button("π Submit")
with gr.Column(scale=2):
doc_segments_output = gr.Textbox(label="π Retrieved Document Segments", lines=10)
answer_output = gr.Textbox(label="π¬ Answer", lines=3)
submit_button.click(
qa_pipeline,
inputs=[pdf_input, query_input],
outputs=[doc_segments_output, answer_output]
)
gr.Markdown(
"""
<style>
body {
background-color: #EDF2F7;
}
input[type="file"] {
background-color: #3182CE;
color: white;
padding: 8px;
border-radius: 5px;
}
button {
background-color: #3182CE;
color: white;
padding: 10px;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #2B6CB0;
}
textarea {
border: 2px solid #CBD5E0;
border-radius: 8px;
padding: 10px;
background-color: #FAFAFA;
}
</style>
"""
)
demo.launch() |