File size: 4,862 Bytes
d37571a
4eb325f
 
 
e47ba0e
d37571a
67d953e
4eb325f
 
d37571a
 
 
 
7f13670
d37571a
42314b4
d37571a
 
 
4eb325f
c50dda1
d37571a
4eb325f
d37571a
4eb325f
 
 
d37571a
 
 
 
 
4eb325f
d37571a
4eb325f
 
 
 
 
 
d37571a
c50dda1
 
4eb325f
c50dda1
 
4eb325f
 
 
 
d37571a
4eb325f
d37571a
c50dda1
 
 
d37571a
4eb325f
 
d37571a
4eb325f
 
d37571a
4eb325f
 
 
 
 
d37571a
4eb325f
 
 
 
c50dda1
4eb325f
c50dda1
4eb325f
 
 
 
d37571a
40781f0
 
 
 
 
 
 
9bcc9ed
40781f0
 
 
 
4eb325f
40781f0
 
c50dda1
 
40781f0
 
 
c50dda1
 
40781f0
 
4eb325f
 
 
 
 
40781f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37571a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import gradio as gr
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere

# Load credentials from environment variables
WEAVIATE_URL = "vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"

# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
    cluster_url=WEAVIATE_URL,
    auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
    headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)

cohere_client = cohere.Client(COHERE_API_KEY)

# Load sentence-transformer model
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')

def load_pdf(file):
    """Extract text from PDF file."""
    reader = PyPDF2.PdfReader(file)
    return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])

def get_embeddings(text):
    """Generate mean pooled embedding for the input text."""
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
    return embeddings

def upload_document_chunks(chunks):
    """Insert document chunks into Weaviate collection with embeddings."""
    doc_collection = client.collections.get("Document")
    for chunk in chunks:
        embedding = get_embeddings(chunk)
        doc_collection.data.insert(
            properties={"content": chunk},
            vector=embedding.tolist()
        )

def query_answer(query):
    """Search for top relevant document chunks based on query embedding."""
    query_embedding = get_embeddings(query)
    results = client.collections.get("Document").query.near_vector(
        near_vector=query_embedding.tolist(),
        limit=3
    )
    return results.objects

def generate_response(context, query):
    """Generate answer using Cohere model based on context and query."""
    response = cohere_client.generate(
        model='command',
        prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
        max_tokens=100
    )
    return response.generations[0].text.strip()

def qa_pipeline(pdf_file, query):
    """Main pipeline for QA: parse PDF, embed chunks, query Weaviate, and generate answer."""
    document_text = load_pdf(pdf_file)
    document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]

    upload_document_chunks(document_chunks)
    top_docs = query_answer(query)

    context = ' '.join([doc.properties['content'] for doc in top_docs])
    answer = generate_response(context, query)

    return context, answer

# Gradio UI
with gr.Blocks(theme="compact") as demo:
    gr.Markdown(
        """
        <div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
            πŸ“„ Interactive QA Bot πŸ”
        </div>
        <p style="text-align: center; font-size: 16px; color: #4A5568;">
            Upload a PDF document, ask questions, and receive answers based on the document content.
        </p>
        <hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(label="πŸ“ Upload PDF", file_types=[".pdf"])
            query_input = gr.Textbox(label="❓ Ask a Question", placeholder="Enter your question here...")
            submit_button = gr.Button("πŸ” Submit")

        with gr.Column(scale=2):
            doc_segments_output = gr.Textbox(label="πŸ“œ Retrieved Document Segments", lines=10)
            answer_output = gr.Textbox(label="πŸ’¬ Answer", lines=3)

    submit_button.click(
        qa_pipeline,
        inputs=[pdf_input, query_input],
        outputs=[doc_segments_output, answer_output]
    )

    gr.Markdown(
        """
        <style>
            body {
                background-color: #EDF2F7;
            }
            input[type="file"] {
                background-color: #3182CE;
                color: white;
                padding: 8px;
                border-radius: 5px;
            }
            button {
                background-color: #3182CE;
                color: white;
                padding: 10px;
                font-size: 16px;
                border-radius: 5px;
                cursor: pointer;
            }
            button:hover {
                background-color: #2B6CB0;
            }
            textarea {
                border: 2px solid #CBD5E0;
                border-radius: 8px;
                padding: 10px;
                background-color: #FAFAFA;
            }
        </style>
        """
    )

demo.launch()