QA_Bot / app.py
gaur3009's picture
Update app.py
d37571a verified
raw
history blame
4.86 kB
import os
import gradio as gr
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere
# Load credentials from environment variables
WEAVIATE_URL = "vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)
cohere_client = cohere.Client(COHERE_API_KEY)
# Load sentence-transformer model
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def load_pdf(file):
"""Extract text from PDF file."""
reader = PyPDF2.PdfReader(file)
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
def get_embeddings(text):
"""Generate mean pooled embedding for the input text."""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
"""Insert document chunks into Weaviate collection with embeddings."""
doc_collection = client.collections.get("Document")
for chunk in chunks:
embedding = get_embeddings(chunk)
doc_collection.data.insert(
properties={"content": chunk},
vector=embedding.tolist()
)
def query_answer(query):
"""Search for top relevant document chunks based on query embedding."""
query_embedding = get_embeddings(query)
results = client.collections.get("Document").query.near_vector(
near_vector=query_embedding.tolist(),
limit=3
)
return results.objects
def generate_response(context, query):
"""Generate answer using Cohere model based on context and query."""
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
"""Main pipeline for QA: parse PDF, embed chunks, query Weaviate, and generate answer."""
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
top_docs = query_answer(query)
context = ' '.join([doc.properties['content'] for doc in top_docs])
answer = generate_response(context, query)
return context, answer
# Gradio UI
with gr.Blocks(theme="compact") as demo:
gr.Markdown(
"""
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
πŸ“„ Interactive QA Bot πŸ”
</div>
<p style="text-align: center; font-size: 16px; color: #4A5568;">
Upload a PDF document, ask questions, and receive answers based on the document content.
</p>
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
"""
)
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="πŸ“ Upload PDF", file_types=[".pdf"])
query_input = gr.Textbox(label="❓ Ask a Question", placeholder="Enter your question here...")
submit_button = gr.Button("πŸ” Submit")
with gr.Column(scale=2):
doc_segments_output = gr.Textbox(label="πŸ“œ Retrieved Document Segments", lines=10)
answer_output = gr.Textbox(label="πŸ’¬ Answer", lines=3)
submit_button.click(
qa_pipeline,
inputs=[pdf_input, query_input],
outputs=[doc_segments_output, answer_output]
)
gr.Markdown(
"""
<style>
body {
background-color: #EDF2F7;
}
input[type="file"] {
background-color: #3182CE;
color: white;
padding: 8px;
border-radius: 5px;
}
button {
background-color: #3182CE;
color: white;
padding: 10px;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #2B6CB0;
}
textarea {
border: 2px solid #CBD5E0;
border-radius: 8px;
padding: 10px;
background-color: #FAFAFA;
}
</style>
"""
)
demo.launch()