Spaces:
Sleeping
Sleeping
File size: 5,799 Bytes
875d1bc b181476 3db7383 875d1bc b181476 fdb1a6b 16dbf0f 0d34466 16dbf0f fdb1a6b 16dbf0f b181476 875d1bc e7c1a90 3db7383 16dbf0f 3db7383 875d1bc e7c1a90 16dbf0f e7c1a90 875d1bc e7c1a90 875d1bc 0d34466 875d1bc 0d34466 875d1bc 0d34466 875d1bc 16dbf0f 875d1bc b181476 875d1bc 0d34466 875d1bc e7c1a90 0d34466 875d1bc e7c1a90 b181476 875d1bc b181476 e7c1a90 92b443e b181476 875d1bc b181476 875d1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from flask import Flask, request, jsonify
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
import logging
import os
import threading
import time
# Set up logging to stdout only
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[
logging.StreamHandler() # Log to stdout
]
)
logger = logging.getLogger(__name__)
# Initialize Flask app
app = Flask(__name__)
# Global variables for model and tokenizer
model = None
tokenizer = None
model_load_status = "not_loaded"
# Define model path and fallback
model_path = "/app/fine-tuned-construction-llm"
fallback_model = "distilgpt2"
# Function to load model in the background
def load_model_background():
global model, tokenizer, model_load_status
try:
if os.path.isdir(model_path):
logger.info(f"Loading local model from {model_path}")
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
model_load_status = "local_model_loaded"
else:
logger.info(f"Model directory not found: {model_path}. Using pre-trained model: {fallback_model}")
model = AutoModelForCausalLM.from_pretrained(fallback_model)
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
model_load_status = "fallback_model_loaded"
logger.info("Model and tokenizer loaded successfully")
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {str(e)}")
model_load_status = f"failed: {str(e)}"
# Start model loading in a background thread
def start_background_tasks():
logger.debug("Starting background tasks")
thread = threading.Thread(target=load_model_background)
thread.daemon = True
thread.start()
@app.route("/")
def root():
logger.debug("Root endpoint accessed")
return jsonify({"message": "Supervisor AI Coach is running"})
@app.route("/health")
def health_check():
logger.debug("Health endpoint accessed")
return jsonify({
"status": "healthy" if model_load_status in ["local_model_loaded", "fallback_model_loaded"] else "starting",
"model_load_status": model_load_status
})
@app.route("/generate_coaching", methods=["POST"])
def generate_coaching():
logger.debug("Generate coaching endpoint accessed")
# Manual validation of request data (replacing Pydantic)
data = request.get_json()
if not data:
logger.error("Invalid request: No JSON data provided")
return jsonify({"error": "Invalid request: JSON data required"}), 400
required_fields = ["role", "project_id", "milestones", "reflection_log"]
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
logger.error(f"Missing required fields: {missing_fields}")
return jsonify({"error": f"Missing required fields: {missing_fields}"}), 400
if model is None or tokenizer is None:
logger.warning("Model or tokenizer not loaded")
# Return a static response if the model isn't loaded yet
response_json = {
"checklist": ["Inspect safety equipment", "Review milestone progress"],
"tips": ["Prioritize team communication", "Check weather updates"],
"quote": "Every step forward counts!"
}
return jsonify(response_json)
try:
# Prepare input text
input_text = (
f"Role: {data['role']}, Project: {data['project_id']}, "
f"Milestones: {data['milestones']}, Reflection: {data['reflection_log']}"
)
# Tokenize input
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
# Generate output
outputs = model.generate(
inputs["input_ids"],
max_length=200,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
temperature=0.7
)
# Decode and parse response
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Since distilgpt2 may not output JSON, parse the response manually or use fallback
if not response_text.startswith("{"):
checklist = ["Inspect safety equipment", "Review milestone progress"]
tips = ["Prioritize team communication", "Check weather updates"]
quote = "Every step forward counts!"
response_json = {"checklist": checklist, "tips": tips, "quote": quote}
logger.warning("Model output is not JSON, using default response")
else:
try:
response_json = json.loads(response_text)
except json.JSONDecodeError:
response_json = {
"checklist": ["Inspect safety equipment", "Review milestone progress"],
"tips": ["Prioritize team communication", "Check weather updates"],
"quote": "Every step forward counts!"
}
logger.warning("Failed to parse model output as JSON, using default response")
return jsonify(response_json)
except Exception as e:
logger.error(f"Error generating coaching response: {str(e)}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
if __name__ == "__main__":
# Start background tasks before the app runs
start_background_tasks()
# Run Flask app with waitress for production-ready WSGI server
from waitress import serve
logger.debug("Starting Flask app with Waitress")
serve(app, host="0.0.0.0", port=7860) |