File size: 17,045 Bytes
74bc48e 530fc98 74bc48e a6e563a 74bc48e 514b274 74bc48e 871f4c3 74bc48e 3748805 9e78969 3748805 74bc48e 5ebff22 5dc395e d8524ba 50f215a d8524ba bb867b2 74bc48e afaae74 74bc48e afaae74 74bc48e 5dc395e 16f71d3 5dc395e 16f71d3 5dc395e 74bc48e d8524ba 34a38bb d8524ba 50f215a 74bc48e afaae74 74bc48e cfb5f2d bb867b2 74bc48e bb867b2 74bc48e 3edb1ec 74bc48e 914221d 74bc48e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import warnings
warnings.filterwarnings("ignore")
import os
import re
import sys
import shutil
import random
import subprocess
import torch
import numpy as np
import pandas as pd
import MDAnalysis as mda
from typing import Optional
from pathlib import Path
from tempfile import NamedTemporaryFile
import huggingface_hub
from huggingface_hub.utils import GatedRepoError
from huggingface_hub import get_hf_file_metadata, hf_hub_download, login
import spaces
import gradio as gr
DEVICE = torch.device('cpu')
REPO_URL = "https://github.com/WaymentSteeleLab/Dyna-1.git"
DYNA_MODEL_ID = "gelnesr/Dyna-1"
def setup_environment():
base_dir = Path(os.getcwd())
dyna1_dir = base_dir / "Dyna-1"
for filename in ["dyna1.pt", "dyna1-esm2.pt", "config.json"]:
if not os.path.exists(f'Dyna-1/model/weights/{filename}'):
print(f"Downloading {filename} from HuggingFace...")
try:
hf_hub_download(
repo_id=DYNA_MODEL_ID,
filename=filename,
repo_type='model',
local_dir=f'{dyna1_dir}/model/weights/',
)
print(f"Successfully downloaded {filename}")
except Exception as e:
print(f"Error downloading {filename}: {str(e)}")
return dyna1_dir
dyna1_dir = setup_environment()
sys.path.insert(0, str(dyna1_dir))
from model.model import ESM_model
from esm.sdk.api import ESMProtein
from esm.utils.structure.protein_chain import ProteinChain
from transformers import AutoTokenizer
import utils
def check_permissions(token: Optional[str] = None) -> None:
if token is None:
raise gr.Error("Please log in to use this Space")
try:
url = huggingface_hub.hf_hub_url(repo_id="EvolutionaryScale/esm3-sm-open-v1", repo_type='model', filename="config.json")
get_hf_file_metadata(url=url)
return
except GatedRepoError:
raise gr.Error("You must have access to ... to run this Space. Please go through the gating process and come back.")
def validate_sequence(sequence):
if not sequence:
return None
alphabets = {'protein': re.compile('^[acdefghiklmnpqrstvwy]*$', re.I)}
if alphabets['protein'].search(sequence) is None:
raise gr.Error('Invalid protein sequence. Please use standard amino acid letters.')
return sequence.upper()
def process_structure(pdb_input, chain_id='A'):
if not pdb_input:
return None, None
if isinstance(pdb_input, str) and len(pdb_input) == 4:
try:
protein_chain = ProteinChain.from_rcsb(pdb_input.upper(), chain_id=chain_id)
except Exception as e:
raise gr.Error(f"Error fetching PDB {pdb_input}: {str(e)}")
else:
temp_pdb = NamedTemporaryFile(suffix='.pdb', delete=False)
try:
if hasattr(pdb_input, 'name'):
with open(pdb_input.name, 'rb') as f:
pdb_content = f.read()
else:
pdb_content = pdb_input.encode() if isinstance(pdb_input, str) else pdb_input
temp_pdb.write(pdb_content)
temp_pdb.close()
protein_chain = ProteinChain.from_pdb(temp_pdb.name, chain_id=chain_id)
except Exception as e:
if os.path.exists(temp_pdb.name):
os.unlink(temp_pdb.name)
raise gr.Error(f"Error processing PDB file: {str(e)}")
if os.path.exists(temp_pdb.name):
os.unlink(temp_pdb.name)
protein = ESMProtein.from_protein_chain(protein_chain)
return protein, protein_chain
def write_probabilities_to_pdb(protein, probabilities, output_path):
"""Write probabilities to PDB B-factors and save the file."""
temp_pdb = NamedTemporaryFile(suffix='.pdb', delete=False)
protein.to_pdb(temp_pdb.name)
curr = mda.Universe(temp_pdb.name)
curr.add_TopologyAttr('bfactors')
protein_out = curr.select_atoms("protein")
for residue, prob in zip(protein_out.residues, probabilities):
for atom in residue.atoms:
atom.tempfactor = prob
protein_out.write(output_path)
os.unlink(temp_pdb.name)
return output_path
def handle_name(name=None, pdb_input=None, model_version="ESM3"):
"""Processes the output file name given inputs of name and pdb; otherwise generates a random number"""
if name:
pdb_name = name
elif pdb_input:
if isinstance(pdb_input, str) and len(pdb_input) == 4:
pdb_name = pdb_input
else:
if hasattr(pdb_input, 'name'):
pdb_name = Path(pdb_input.name).stem
else:
pdb_name = str(random.randint(0, 100000))
else:
pdb_name = str(random.randint(0, 100000))
return f'{pdb_name}-Dyna1{"" if model_version == "ESM3" else "-ESM2"}'
@spaces.GPU(duration=50)
def run_model(model, model_version='ESM2', seq_input=None, struct_input=None, sequence_id=None):
if model_version == "ESM3":
logits = model((seq_input, struct_input), sequence_id)
else:
logits = model(seq_input, sequence_id)
return logits.cpu().detach()
def predict_dynamics(sequence=None, pdb_input=None, chain_id='A', use_pdb_seq=False, model_version="ESM3", name=None, oauth_token: Optional[str] = None):
try:
# Validate ESM2 requires sequence
if model_version == "ESM2" and not sequence:
raise ValueError("ESM-2 model requires a sequence input. Please provide a protein sequence.")
if model_version == "ESM3" and not (sequence or pdb_input):
raise ValueError("ESM-3 model requires either a sequence, structure (PDB ID/file), or both. Please provide at least one input.")
base_name = handle_name(name, pdb_input, model_version)
seq_input, struct_input = None, None
sequence = validate_sequence(sequence) if sequence else None
protein = None
if model_version == "ESM3":
model = ESM_model(method='esm3')
model.load_state_dict(torch.load('Dyna-1/model/weights/dyna1.pt', map_location=torch.device('cpu')), strict=False)
else:
model = ESM_model(method='esm2', nheads=8, nlayers=12, layer=30).to(DEVICE)
model.load_state_dict(torch.load('Dyna-1/model/weights/dyna1-esm2.pt', map_location=torch.device('cpu')), strict=False)
model.eval()
if pdb_input and model_version == "ESM3":
protein, protein_chain = process_structure(pdb_input, chain_id)
encoder = model.model.encode(protein)
struct_input = encoder.structure[1:-1].unsqueeze(0)
pdb_seq = protein.sequence
seq_input = encoder.sequence[1:-1].unsqueeze(0)
sequence_id = seq_input != 4099
if not use_pdb_seq:
seq_input = None
if sequence and len(pdb_seq) != len(sequence):
raise ValueError('Length of provided sequence does not match length of structure input.')
if sequence:
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
token_seq = tokenizer.encode(sequence, add_special_tokens=False, return_tensors='np')
seq_input = torch.from_numpy(token_seq).to(DEVICE)
sequence_id = seq_input != 4099
if not (sequence or (pdb_input and model_version == "ESM3")):
raise ValueError('Please provide a sequence' + (' or structure input' if model_version == "ESM3" else ''))
logits = run_model(model, model_version, seq_input, struct_input, sequence_id)
probabilities = utils.prob_adjusted(logits).numpy()
seq_to_use = sequence if sequence else pdb_seq if pdb_input else sequence
results_df = pd.DataFrame({
'position': np.arange(1, len(probabilities) + 1),
'residue': np.array(list(seq_to_use)),
'p_exchange': probabilities,
})
csv_output = None
pdb_output = None
temp_csv = None
temp_pdb = None
try:
temp_csv = NamedTemporaryFile(suffix='.csv', delete=False)
results_df.to_csv(temp_csv.name, index=False)
csv_output = temp_csv.name
os.rename(csv_output, f"{base_name}.csv")
csv_output = f"{base_name}.csv"
if protein is not None and model_version == "ESM3":
temp_pdb = NamedTemporaryFile(suffix='.pdb', delete=False)
pdb_output = write_probabilities_to_pdb(protein, probabilities, temp_pdb.name)
os.rename(pdb_output, f"{base_name}.pdb")
pdb_output = f"{base_name}.pdb"
return csv_output, pdb_output if pdb_output else None
except Exception as e:
if temp_csv and os.path.exists(temp_csv.name):
os.unlink(temp_csv.name)
if temp_pdb and os.path.exists(temp_pdb.name):
os.unlink(temp_pdb.name)
raise gr.Error(f"Error saving output files: {str(e)}")
except Exception as e:
raise gr.Error(str(e))
css = """
.gradio-container {
font-family: 'Inter', system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
}
.tabs {
margin-top: 0;
margin-bottom: 0;
}
.gap {
gap: 1rem;
}
"""
dyna1_app = gr.Blocks(theme=gr.themes.Soft(), mode="light")
with dyna1_app:
gr.Markdown("# Dyna-1")
gr.Markdown("## Predict micro-millisecond protein dynamics from sequence and/or structure")
gr.Markdown("""[Paper](https://www.biorxiv.org/content/10.1101/2025.03.19.642801v1) |
[GitHub](https://github.com/WaymentSteeleLab/Dyna-1) |
[Model](https://huggingface.co/gelnesr/Dyna-1) |
[Datasets](https://huggingface.co/datasets/gelnesr/RelaxDB) |
[Colab](https://colab.research.google.com/github/WaymentSteeleLab/Dyna-1/blob/main/colab/Dyna_1.ipynb)""")
gr.Markdown("""
Dyna-1 predicts the probability that each residue experiences micro-millisecond motions.
You can provide either a protein sequence, a structure (PDB ID or file), or both for the best performance.
""")
with gr.Row():
gr.Markdown("""
## Instructions
- Authorize access to ESM-3 by logging in to HuggingFace (required for ESM-3)
- Enter a protein sequence using standard amino acid letters (optional)
- Provide a PDB ID (e.g., "1ubq") or upload a PDB file (optional)
- Specify the chain ID if using a structure (default: A)
- Choose whether to use the sequence from the PDB structure
You can toggle between using the ESM-3 and ESM-2 versions of the Dyna-1 model. To run with ESM-3, make sure you already
have access to the `EvolutionaryScale/esm3-sm-open-v1` weights [here](https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1).
Note: The model will automatically set up the required environment on first run.
Use of this HF Space is subject to a [Non-Commercial Use License](https://github.com/WaymentSteeleLab/Dyna-1/blob/main/LICENSE.txt).
""")
gr.Image(f"assets/dyna1.png", show_label=False)
gr.LoginButton()
model_choice = gr.Dropdown(
choices=["ESM3", "ESM2"],
value="ESM3",
label="Choose model version"
)
with gr.Tabs() as tabs:
with gr.Tab("Input"):
with gr.Column(visible=True) as esm3_inputs:
name_input = gr.Text(
label="Job Name (optional)",
placeholder="Enter name for the job. This will specify the output files. Leave blank to use PDB ID or a random number"
)
sequence_input_esm3 = gr.Textbox(
label="Protein Sequence",
placeholder="Enter protein sequence using standard amino acid letters",
lines=1
)
pdb_id = gr.Text(
label="PDB ID",
placeholder="Enter 4-letter PDB ID (e.g. 1UBQ)"
)
use_pdb_seq = gr.Checkbox(
label="Use sequence from PDB",
value=False
)
pdb_file = gr.File(
label="Or upload PDB file",
file_count="single"
)
chain_id = gr.Text(
label="Chain ID",
value="A",
placeholder="Enter chain ID"
)
submit_btn_esm3 = gr.Button("Predict", variant="primary")
with gr.Column(visible=False) as esm2_inputs:
name_input_esm2 = gr.Text(
label="Output Name (optional)",
placeholder="Enter name for the job. Leave blank to use a random number"
)
sequence_input_esm2 = gr.Textbox(
label="Protein Sequence",
placeholder="Enter protein sequence using standard amino acid letters",
lines=1
)
submit_btn_esm2 = gr.Button("Predict", variant="primary")
with gr.Row(visible=True) as examples_esm3:
label = gr.Textbox(label="Label", visible=False)
examples = gr.Dataset(
components=[label, sequence_input_esm3, pdb_id, chain_id, use_pdb_seq],
samples=[
["Structure and its sequence", "-", "1ubq", "A", True],
["Structure and unique sequence", "MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG", "1ubq", "A", False],
["Sequence only", "MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG", "-", "-", False],
["Structure only", "-", "1ubq", "A", False]
],
label="Examples"
)
with gr.Tab("Results"):
with gr.Row(visible=True) as results_esm3:
csv_output_esm3 = gr.File(label="Download Results (.csv)")
pdb_output_esm3 = gr.File(label="Download PDB")
with gr.Row(visible=False) as results_esm2:
csv_output_esm2 = gr.File(label="Download Results (.csv)")
def toggle_model_inputs(choice):
if choice == "ESM3":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
model_choice.change(
fn=toggle_model_inputs,
inputs=model_choice,
outputs=[esm3_inputs, esm2_inputs, results_esm3, results_esm2, examples_esm3]
)
def predict_esm3(name, sequence, pdb_id, pdb_file, chain_id, use_pdb_seq, oauth_token: gr.OAuthToken | None = None):
if oauth_token is None:
raise gr.Error("Please log in to use this Space")
token_value = oauth_token.token
check_permissions(token_value)
csv_output, pdb_output = predict_dynamics(
sequence=sequence,
pdb_input=pdb_id if pdb_id else pdb_file,
chain_id=chain_id,
use_pdb_seq=use_pdb_seq,
model_version="ESM3",
name=name,
oauth_token=token_value
)
return [csv_output, pdb_output]
def predict_esm2(name, sequence):
csv_output, _ = predict_dynamics(
sequence=sequence,
pdb_input=None,
chain_id=None,
use_pdb_seq=False,
model_version="ESM2",
name=name
)
return [csv_output]
submit_btn_esm3.click(
fn=predict_esm3,
inputs=[name_input, sequence_input_esm3, pdb_id, pdb_file, chain_id, use_pdb_seq],
outputs=[csv_output_esm3, pdb_output_esm3]
)
submit_btn_esm2.click(
fn=predict_esm2,
inputs=[name_input_esm2, sequence_input_esm2],
outputs=[csv_output_esm2]
)
gr.Markdown("""
---
This HuggingFace Space was created by Gina El Nesr [@ginaelnesr](https://twitter.com/ginaelnesr).
""")
gr.Markdown("""If you are using our code, datasets, or model, please use the following citation:
```bibtex
@article {Dyna-1,
author = {Wayment-Steele, Hannah K. and El Nesr, Gina and Hettiarachchi, Ramith and Kariyawasam, Hasindu and Ovchinnikov, Sergey and Kern, Dorothee},
title = {Learning millisecond protein dynamics from what is missing in NMR spectra},
year = {2025},
doi = {10.1101/2025.03.19.642801},
journal = {bioRxiv}
}
```
""")
if __name__ == "__main__":
dyna1_app.launch(
share=True
)
|