File size: 4,968 Bytes
81b1a0e
 
 
 
 
c36a9d3
6284dc0
ab98f09
6284dc0
 
e797135
6be00d8
e797135
81b1a0e
53ff575
81b1a0e
621c740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b1a0e
0972107
81b1a0e
1592dab
81b1a0e
c36a9d3
 
81b1a0e
 
6284dc0
81b1a0e
 
 
c36a9d3
eeef7f4
 
d967d62
 
 
c36a9d3
0972107
 
cb61e6f
c36a9d3
 
 
 
 
 
a0c2c56
eeef7f4
0972107
 
cb61e6f
0972107
1acca69
0972107
 
 
 
741bf59
ab98f09
0972107
a0c2c56
eeef7f4
 
 
ab98f09
 
 
 
 
 
 
 
1acca69
0972107
 
eeef7f4
 
8da09d2
1ba1ac4
 
 
 
 
 
 
 
6b21c48
1ba1ac4
 
 
 
 
 
 
 
1f5deb3
1ba1ac4
 
 
6b21c48
3847cbf
 
 
36207bf
1f5deb3
3847cbf
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces  # Required for @spaces.GPU

from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

device = "cuda" if torch.cuda.is_available() else "cpu"

def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked

def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(
        image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]

def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]

    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)

    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * \
        (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B

class ImagePreprocessor():
    def __init__(self, resolution=(1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406],
                                 [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image

# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
    'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()

def remove_background_wrapper(image):
    if image is None:
        raise gr.Error("Please upload an image.")
    image_ori = Image.fromarray(image).convert('RGB')
    # Call the processing function
    foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
    return foreground, background, pred_pil, reverse_mask

@spaces.GPU  # Decorate the processing function
def remove_background(image_ori):
    original_size = image_ori.size

    # Preprocess the image
    image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
    image_proc = image_preprocessor.proc(image_ori)
    image_proc = image_proc.unsqueeze(0)

    # Prediction
    with torch.no_grad():
        preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
    pred = preds[0].squeeze()

    # Process Results
    pred_pil = transforms.ToPILImage()(pred)
    pred_pil = pred_pil.resize(original_size, Image.BICUBIC)  # Resize mask to original size

    # Create reverse mask (background mask)
    reverse_mask = ImageOps.invert(pred_pil)

    # Create foreground image (object with transparent background)
    foreground = image_ori.copy()
    foreground.putalpha(pred_pil)

    # Create background image
    background = image_ori.copy()
    background.putalpha(reverse_mask)

    torch.cuda.empty_cache()

    # Return images in the specified order
    return foreground, background, pred_pil, reverse_mask

# Custom CSS for button styling
custom_css = """
@keyframes gradient-animation {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

#submit-button {
    background: linear-gradient(
        135deg,
        #e0f7fa, #e8f5e9, #fff9c4, #ffebee,
        #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
    );
    background-size: 400% 400%;
    animation: gradient-animation 15s ease infinite;
    border-radius: 12px;
    color: black;
}
"""

with gr.Blocks(css=custom_css) as demo:
    # Interface setup with input and output
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="numpy", label="Upload Image")
            btn = gr.Button("Process Image", elem_id="submit-button")
        with gr.Column():
            output_foreground = gr.Image(type="pil", label="Foreground")
            output_background = gr.Image(type="pil", label="Background")
            output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
            output_background_mask = gr.Image(type="pil", label="Background Mask")

    # Link the button to the processing function
    btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
        output_foreground, output_background, output_foreground_mask, output_background_mask])

    demo.launch(debug=True)