Spaces:
Runtime error
Runtime error
File size: 4,968 Bytes
81b1a0e c36a9d3 6284dc0 ab98f09 6284dc0 e797135 6be00d8 e797135 81b1a0e 53ff575 81b1a0e 621c740 81b1a0e 0972107 81b1a0e 1592dab 81b1a0e c36a9d3 81b1a0e 6284dc0 81b1a0e c36a9d3 eeef7f4 d967d62 c36a9d3 0972107 cb61e6f c36a9d3 a0c2c56 eeef7f4 0972107 cb61e6f 0972107 1acca69 0972107 741bf59 ab98f09 0972107 a0c2c56 eeef7f4 ab98f09 1acca69 0972107 eeef7f4 8da09d2 1ba1ac4 6b21c48 1ba1ac4 1f5deb3 1ba1ac4 6b21c48 3847cbf 36207bf 1f5deb3 3847cbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces # Required for @spaces.GPU
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
def remove_background_wrapper(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
# Call the processing function
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
return foreground, background, pred_pil, reverse_mask
@spaces.GPU # Decorate the processing function
def remove_background(image_ori):
original_size = image_ori.size
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Process Results
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
# Create reverse mask (background mask)
reverse_mask = ImageOps.invert(pred_pil)
# Create foreground image (object with transparent background)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
# Create background image
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
# Return images in the specified order
return foreground, background, pred_pil, reverse_mask
# Custom CSS for button styling
custom_css = """
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
#submit-button {
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
border-radius: 12px;
color: black;
}
"""
with gr.Blocks(css=custom_css) as demo:
# Interface setup with input and output
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
btn = gr.Button("Process Image", elem_id="submit-button")
with gr.Column():
output_foreground = gr.Image(type="pil", label="Foreground")
output_background = gr.Image(type="pil", label="Background")
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
output_background_mask = gr.Image(type="pil", label="Background Mask")
# Link the button to the processing function
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
output_foreground, output_background, output_foreground_mask, output_background_mask])
demo.launch(debug=True) |