Spaces:
Runtime error
Runtime error
File size: 6,188 Bytes
81b1a0e 6bafd2d ab98f09 6284dc0 e797135 6bafd2d 63d9326 6bafd2d 63d9326 6bafd2d 63d9326 6bafd2d 6be00d8 e797135 63d9326 53ff575 81b1a0e 621c740 6bafd2d 621c740 81b1a0e 0972107 81b1a0e 1592dab 81b1a0e c36a9d3 81b1a0e 6284dc0 81b1a0e c36a9d3 eeef7f4 d967d62 c36a9d3 0972107 cb61e6f c36a9d3 6bafd2d c36a9d3 a0c2c56 0972107 cb61e6f 0972107 6bafd2d 0972107 6bafd2d 0972107 6bafd2d eeef7f4 6bafd2d ab98f09 6bafd2d ab98f09 6bafd2d 0972107 6bafd2d eeef7f4 8da09d2 1ba1ac4 6b21c48 1ba1ac4 1f5deb3 1ba1ac4 6bafd2d 63d9326 3847cbf 97dda91 1f5deb3 3847cbf 63d9326 3847cbf 4446ce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
# Custom White Theme with Inter font
class WhiteTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.orange,
font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-sans-serif",
"system-ui",
"sans-serif",
),
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-monospace",
"system-ui",
"monospace",
)
):
super().__init__(
primary_hue=primary_hue,
font=font,
font_mono=font_mono,
)
self.set(
body_background_fill="white",
block_background_fill="white",
panel_background_fill="white",
body_text_color="black",
block_label_text_color="black",
block_border_color="white",
panel_border_color="white",
input_border_color="lightgray",
shadow_drop="none",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
button_secondary_background_fill="white",
button_secondary_border_color="lightgray",
slider_color="*primary_500",
slider_track_color="lightgray"
)
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
def remove_background_wrapper(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
return foreground, background, pred_pil, reverse_mask
@spaces.GPU
def remove_background(image_ori):
original_size = image_ori.size
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
reverse_mask = ImageOps.invert(pred_pil)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
return foreground, background, pred_pil, reverse_mask
# Custom CSS for button styling
custom_css = """
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
#submit-button {
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
border-radius: 12px;
color: black;
}
"""
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
# Interface setup with input and output
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image")
btn = gr.Button("Process Image", elem_id="submit-button")
with gr.Column():
output_foreground = gr.Image(type="pil", label="Foreground")
output_background = gr.Image(type="pil", label="Background")
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
output_background_mask = gr.Image(type="pil", label="Background Mask")
# Link the button to the processing function
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
output_foreground, output_background, output_foreground_mask, output_background_mask])
demo.launch(debug=True) |