File size: 6,446 Bytes
44993c6
09d4e3b
44993c6
d079ec5
09d4e3b
 
 
d079ec5
 
09d4e3b
557f37f
09d4e3b
 
557f37f
86bc5ce
 
 
557f37f
 
 
 
 
 
 
 
 
 
 
 
 
 
09d4e3b
 
 
 
 
 
86bc5ce
 
557f37f
09d4e3b
 
 
 
 
 
 
 
 
 
 
 
86bc5ce
557f37f
 
 
 
 
 
 
09d4e3b
44993c6
09d4e3b
44993c6
09d4e3b
 
 
 
 
44993c6
 
 
09d4e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d079ec5
557f37f
d079ec5
557f37f
 
 
 
 
 
44993c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d4e3b
 
 
44993c6
 
 
 
09d4e3b
 
 
44993c6
09d4e3b
 
 
 
 
 
 
 
 
 
44993c6
09d4e3b
 
 
 
44993c6
 
09d4e3b
 
 
 
 
 
 
 
 
44993c6
 
09d4e3b
d079ec5
557f37f
d079ec5
557f37f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from pathlib import Path
import tempfile

import gradio as gr
import librosa
import tgt.core
import tgt.io3
from transformers import pipeline

TEXTGRID_DIR = tempfile.mkdtemp()
DEFAULT_MODEL = "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa"
TEXTGRID_DOWNLOAD_TEXT = "Download TextGrid file"
TEXTGRID_NAME_INPUT_LABEL = "TextGrid file name"


VALID_MODELS = [
    "ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa-plus-2000",
    "ginic/data_seed_bs64_1_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/data_seed_bs64_2_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/data_seed_bs64_3_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_30_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_30_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_30_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_30_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_30_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_70_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_70_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_70_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_old_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_old_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_young_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_young_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
    "ginic/vary_individuals_young_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
]


def load_model_and_predict(
    model_name: str,
    audio_in: str,
    model_state: dict,
):
    if audio_in is None:
        return (
            "",
            model_state,
            gr.Textbox(label=TEXTGRID_NAME_INPUT_LABEL, interactive=False),
        )

    if model_state["model_name"] != model_name:
        model_state = {
            "loaded_model": pipeline(
                task="automatic-speech-recognition", model=model_name
            ),
            "model_name": model_name,
        }

    prediction = model_state["loaded_model"](audio_in)["text"]
    return (
        prediction,
        model_state,
        gr.Textbox(
            label=TEXTGRID_NAME_INPUT_LABEL,
            interactive=True,
            value=Path(audio_in).with_suffix(".TextGrid").name,
        ),
    )


def get_textgrid_contents(audio_in, textgrid_tier_name, transcription_prediction):
    if audio_in is None or transcription_prediction is None:
        return ""

    duration = librosa.get_duration(path=audio_in)

    annotation = tgt.core.Interval(0, duration, transcription_prediction)
    transcription_tier = tgt.core.IntervalTier(
        start_time=0, end_time=duration, name=textgrid_tier_name
    )
    transcription_tier.add_annotation(annotation)
    textgrid = tgt.core.TextGrid()
    textgrid.add_tier(transcription_tier)
    return tgt.io3.export_to_long_textgrid(textgrid)


def write_textgrid(textgrid_contents, textgrid_filename):
    """Writes the text grid contents to a named file in the temporary directory.
    Returns the path for download.
    """
    textgrid_path = Path(TEXTGRID_DIR) / Path(textgrid_filename).name
    textgrid_path.write_text(textgrid_contents)
    return textgrid_path


def get_interactive_download_button(textgrid_contents, textgrid_filename):
    return gr.DownloadButton(
        label=TEXTGRID_DOWNLOAD_TEXT,
        variant="primary",
        interactive=True,
        value=write_textgrid(textgrid_contents, textgrid_filename),
    )


def launch_demo():
    initial_model = {
        "loaded_model": pipeline(
            task="automatic-speech-recognition", model=DEFAULT_MODEL
        ),
        "model_name": DEFAULT_MODEL,
    }

    with gr.Blocks() as demo:
        gr.Markdown(
            """# Automatic International Phonetic Alphabet Transcription
            This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.""",
        )
        model_name = gr.Dropdown(
            VALID_MODELS,
            value=DEFAULT_MODEL,
            label="IPA transcription ASR model",
            info="Select the model to use for prediction.",
        )
        audio_in = gr.Audio(type="filepath", show_download_button=True)
        model_state = gr.State(value=initial_model)

        prediction = gr.Textbox(label="Predicted IPA transcription")

        gr.Markdown("""## TextGrid File Options
                    Change these inputs if you'd like to customize and download the transcription in [TextGrid format](https://www.fon.hum.uva.nl/praat/manual/TextGrid_file_formats.html) for Praat.
                    """)
        textgrid_tier = gr.Textbox(
            label="TextGrid Tier Name", value="transcription", interactive=True
        )

        textgrid_filename = gr.Textbox(
            label=TEXTGRID_NAME_INPUT_LABEL, interactive=False
        )

        textgrid_contents = gr.Textbox(
            label="TextGrid Contents",
            value=get_textgrid_contents,
            inputs=[audio_in, textgrid_tier, prediction],
        )

        download_btn = gr.DownloadButton(
            label=TEXTGRID_DOWNLOAD_TEXT,
            interactive=False,  # Don't allow download button to be active until an upload happened
            variant="primary",
        )

        # Update prediction if model or audio changes
        gr.on(
            triggers=[audio_in.input, model_name.change],
            fn=load_model_and_predict,
            inputs=[model_name, audio_in, model_state],
            outputs=[prediction, model_state, textgrid_filename],
        )

        # Download button becomes interactive if user updates audio or textgrid params
        gr.on(
            triggers=[textgrid_contents.change, textgrid_filename.change],
            fn=get_interactive_download_button,
            inputs=[textgrid_contents, textgrid_filename],
            outputs=[download_btn],
        )

    demo.launch(max_file_size="100mb")


if __name__ == "__main__":
    launch_demo()