Time-Stream / app.py
ginipick's picture
Update app.py
6bee32e verified
raw
history blame
24.9 kB
import argparse
import spaces
from visualcloze import VisualClozeModel
import gradio as gr
import examples
import torch
from functools import partial
from data.prefix_instruction import get_layout_instruction
from huggingface_hub import snapshot_download
# Define the missing variables here
GUIDANCE = """
## How to use this demo:
1. Select a task example from the right side, or prepare your own in-context examples and query.
2. The grid will be filled with in-context examples and a query row.
3. You can modify the task description or add content descriptions.
4. Click "Generate" to create images following the pattern shown in examples.
"""
NOTE = """
**Note:** The examples on the right side demonstrate various tasks.
Click on any example to load it into the interface. You can then modify images or prompts as needed.
"""
CITATION = """
## Paper Citation
```
@article{liu2024visualcloze,
title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning},
author={Liu, Zhaoyang and Lian, Yuheng and Wang, Jianfeng and Zhou, Aojun and Liu, Jiashi and Ye, Hang and Chen, Kai and Wang, Jingdong and Zhao, Deli},
journal={arXiv preprint arXiv:2504.07960},
year={2024}
}
```
"""
max_grid_h = 5
max_grid_w = 5
default_grid_h = 2
default_grid_w = 3
default_upsampling_noise = 0.4
default_steps = 30
def create_demo(model):
with gr.Blocks(title="VisualCloze Demo") as demo:
gr.Markdown("# VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/lzyhha/VisualCloze">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://visualcloze.github.io/">
<img src='https://img.shields.io/badge/Project-Website-green'>
</a>
<a href="https://arxiv.org/abs/2504.07960">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/VisualCloze/VisualCloze">
<img src='https://img.shields.io/badge/VisualCloze%20checkpoint-HF%20Model-green?logoColor=violet&label=%F0%9F%A4%97%20Checkpoint'>
</a>
<a href="https://huggingface.co/datasets/VisualCloze/Graph200K">
<img src='https://img.shields.io/badge/VisualCloze%20datasets-HF%20Dataset-6B88E3?logoColor=violet&label=%F0%9F%A4%97%20Graph200k%20Dataset'>
</a>
</div>
""")
gr.Markdown(GUIDANCE)
# Pre-create all possible image components
all_image_inputs = []
rows = []
row_texts = []
with gr.Row():
with gr.Column(scale=2):
# Image grid
for i in range(max_grid_h):
# Add row label before each row
row_texts.append(gr.Markdown(
"## Query" if i == default_grid_h - 1 else f"## In-context Example {i + 1}",
elem_id=f"row_text_{i}",
visible=i < default_grid_h
))
with gr.Row(visible=i < default_grid_h, elem_id=f"row_{i}") as row:
rows.append(row)
for j in range(max_grid_w):
img_input = gr.Image(
label=f"In-context Example {i + 1}/{j + 1}" if i != default_grid_h - 1 else f"Query {j + 1}",
type="pil",
visible= i < default_grid_h and j < default_grid_w,
interactive=True,
elem_id=f"img_{i}_{j}"
)
all_image_inputs.append(img_input)
# Prompts
layout_prompt = gr.Textbox(
label="Layout Description (Auto-filled, Read-only)",
placeholder="Layout description will be automatically filled based on grid size...",
value=get_layout_instruction(default_grid_w, default_grid_h),
elem_id="layout_prompt",
interactive=False
)
task_prompt = gr.Textbox(
label="Task Description (Can be modified by referring to examples to perform custom tasks, but may lead to unstable results)",
placeholder="Describe what task should be performed...",
value="",
elem_id="task_prompt"
)
content_prompt = gr.Textbox(
label="(Optional) Content Description (Image caption, Editing instructions, etc.)",
placeholder="Describe the content requirements...",
value="",
elem_id="content_prompt"
)
generate_btn = gr.Button("Generate", elem_id="generate_btn")
gr.Markdown(NOTE)
grid_h = gr.Slider(minimum=0, maximum=max_grid_h-1, value=default_grid_h-1, step=1, label="Number of In-context Examples", elem_id="grid_h")
grid_w = gr.Slider(minimum=1, maximum=max_grid_w, value=default_grid_w, step=1, label="Task Columns", elem_id="grid_w")
with gr.Accordion("Advanced options", open=False):
seed = gr.Number(label="Seed (0 for random)", value=0, precision=0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1)
upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1)
upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.05)
gr.Markdown(CITATION)
# Output
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Results",
show_label=True,
elem_id="output_gallery",
columns=None,
rows=None,
height="auto",
allow_preview=True,
object_fit="contain"
)
gr.Markdown("# Task Examples")
gr.Markdown("Each click on a task may result in different examples.")
text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False)
dense_prediction_tasks = gr.Dataset(
samples=examples.dense_prediction_text,
label='Dense Prediction',
samples_per_page=1000,
components=[text_dense_prediction_tasks])
text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False)
conditional_generation_tasks = gr.Dataset(
samples=examples.conditional_generation_text,
label='Conditional Generation',
samples_per_page=1000,
components=[text_conditional_generation_tasks])
text_image_restoration_tasks = gr.Textbox(label="Task", visible=False)
image_restoration_tasks = gr.Dataset(
samples=examples.image_restoration_text,
label='Image Restoration',
samples_per_page=1000,
components=[text_image_restoration_tasks])
text_style_transfer_tasks = gr.Textbox(label="Task", visible=False)
style_transfer_tasks = gr.Dataset(
samples=examples.style_transfer_text,
label='Style Transfer',
samples_per_page=1000,
components=[text_style_transfer_tasks])
text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False)
style_condition_fusion_tasks = gr.Dataset(
samples=examples.style_condition_fusion_text,
label='Style Condition Fusion',
samples_per_page=1000,
components=[text_style_condition_fusion_tasks])
text_tryon_tasks = gr.Textbox(label="Task", visible=False)
tryon_tasks = gr.Dataset(
samples=examples.tryon_text,
label='Virtual Try-On',
samples_per_page=1000,
components=[text_tryon_tasks])
text_relighting_tasks = gr.Textbox(label="Task", visible=False)
relighting_tasks = gr.Dataset(
samples=examples.relighting_text,
label='Relighting',
samples_per_page=1000,
components=[text_relighting_tasks])
text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
photodoodle_tasks = gr.Dataset(
samples=examples.photodoodle_text,
label='Photodoodle',
samples_per_page=1000,
components=[text_photodoodle_tasks])
text_editing_tasks = gr.Textbox(label="Task", visible=False)
editing_tasks = gr.Dataset(
samples=examples.editing_text,
label='Editing',
samples_per_page=1000,
components=[text_editing_tasks])
text_unseen_tasks = gr.Textbox(label="Task", visible=False)
unseen_tasks = gr.Dataset(
samples=examples.unseen_tasks_text,
label='Unseen Tasks (May produce unstable effects)',
samples_per_page=1000,
components=[text_unseen_tasks])
gr.Markdown("# Subject-driven Tasks Examples")
text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
subject_driven_tasks = gr.Dataset(
samples=examples.subject_driven_text,
label='Subject-driven Generation',
samples_per_page=1000,
components=[text_subject_driven_tasks])
text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
condition_subject_fusion_tasks = gr.Dataset(
samples=examples.condition_subject_fusion_text,
label='Condition+Subject Fusion',
samples_per_page=1000,
components=[text_condition_subject_fusion_tasks])
text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
style_transfer_with_subject_tasks = gr.Dataset(
samples=examples.style_transfer_with_subject_text,
label='Style Transfer with Subject',
samples_per_page=1000,
components=[text_style_transfer_with_subject_tasks])
text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
condition_subject_style_fusion_tasks = gr.Dataset(
samples=examples.condition_subject_style_fusion_text,
label='Condition+Subject+Style Fusion',
samples_per_page=1000,
components=[text_condition_subject_style_fusion_tasks])
text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
editing_with_subject_tasks = gr.Dataset(
samples=examples.editing_with_subject_text,
label='Editing with Subject',
samples_per_page=1000,
components=[text_editing_with_subject_tasks])
text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
image_restoration_with_subject_tasks = gr.Dataset(
samples=examples.image_restoration_with_subject_text,
label='Image Restoration with Subject',
samples_per_page=1000,
components=[text_image_restoration_with_subject_tasks])
def update_grid(h, w):
actual_h = h + 1
model.set_grid_size(actual_h, w)
updates = []
# Update image component visibility
for i in range(max_grid_h * max_grid_w):
curr_row = i // max_grid_w
curr_col = i % max_grid_w
updates.append(
gr.update(
label=f"In-context Example {curr_row + 1}/{curr_col + 1}" if curr_row != actual_h - 1 else f"Query {curr_col + 1}",
elem_id=f"img_{curr_row}_{curr_col}",
visible=(curr_row < actual_h and curr_col < w)))
# Update row visibility and labels
updates_row = []
updates_row_text = []
for i in range(max_grid_h):
updates_row.append(gr.update(f"row_{i}", visible=(i < actual_h)))
updates_row_text.append(
gr.update(
elem_id=f"row_text_{i}",
visible=i < actual_h,
value="## Query" if i == actual_h - 1 else f"## In-context Example {i + 1}",
)
)
updates.extend(updates_row)
updates.extend(updates_row_text)
updates.append(gr.update(elem_id="layout_prompt", value=get_layout_instruction(w, actual_h)))
return updates
def generate_image(*inputs):
images = []
if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
raise gr.Error('Please wait for the loading to complete.')
for i in range(model.grid_h):
images.append([])
for j in range(model.grid_w):
images[i].append(inputs[i * max_grid_w + j])
if i != model.grid_h - 1:
if inputs[i * max_grid_w + j] is None:
raise gr.Error('Please upload in-context examples. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again.')
seed, cfg, steps, upsampling_steps, upsampling_noise, layout_text, task_text, content_text = inputs[-8:]
try:
results = generate(
images,
[layout_text, task_text, content_text],
seed=seed, cfg=cfg, steps=steps,
upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
)
except Exception as e:
raise gr.Error('Process error. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again. Error: ' + str(e))
output = gr.update(
elem_id='output_gallery',
value=results,
columns=min(len(results), 2),
rows=int(len(results) / 2 + 0.5))
return output
def process_tasks(task, func):
outputs = func(task)
mask = outputs[0]
state = outputs[1:8]
if state[5] is None:
state[5] = default_upsampling_noise
if state[6] is None:
state[6] = default_steps
images = outputs[8:-len(mask)]
output = outputs[-len(mask):]
for i in range(len(mask)):
if mask[i] == 1:
images.append(None)
else:
images.append(output[-len(mask) + i])
state[0] = state[0] - 1
cur_hrid_h = state[0]
cur_hrid_w = state[1]
current_example = [None] * 25
for i, image in enumerate(images):
pos = (i // cur_hrid_w) * 5 + (i % cur_hrid_w)
if image is not None:
current_example[pos] = image
update_grid(cur_hrid_h, cur_hrid_w)
output = gr.update(
elem_id='output_gallery',
value=[o for o, m in zip(output, mask) if m == 1],
columns=min(sum(mask), 2),
rows=int(sum(mask) / 2 + 0.5))
return [output] + current_example + state
dense_prediction_tasks.click(
partial(process_tasks, func=examples.process_dense_prediction_tasks),
inputs=[dense_prediction_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full",
show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
conditional_generation_tasks.click(
partial(process_tasks, func=examples.process_conditional_generation_tasks),
inputs=[conditional_generation_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
image_restoration_tasks.click(
partial(process_tasks, func=examples.process_image_restoration_tasks),
inputs=[image_restoration_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_transfer_tasks.click(
partial(process_tasks, func=examples.process_style_transfer_tasks),
inputs=[style_transfer_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_condition_fusion_tasks.click(
partial(process_tasks, func=examples.process_style_condition_fusion_tasks),
inputs=[style_condition_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
relighting_tasks.click(
partial(process_tasks, func=examples.process_relighting_tasks),
inputs=[relighting_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
tryon_tasks.click(
partial(process_tasks, func=examples.process_tryon_tasks),
inputs=[tryon_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
photodoodle_tasks.click(
partial(process_tasks, func=examples.process_photodoodle_tasks),
inputs=[photodoodle_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
editing_tasks.click(
partial(process_tasks, func=examples.process_editing_tasks),
inputs=[editing_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
unseen_tasks.click(
partial(process_tasks, func=examples.process_unseen_tasks),
inputs=[unseen_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
subject_driven_tasks.click(
partial(process_tasks, func=examples.process_subject_driven_tasks),
inputs=[subject_driven_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_transfer_with_subject_tasks.click(
partial(process_tasks, func=examples.process_style_transfer_with_subject_tasks),
inputs=[style_transfer_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
condition_subject_fusion_tasks.click(
partial(process_tasks, func=examples.process_condition_subject_fusion_tasks),
inputs=[condition_subject_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
condition_subject_style_fusion_tasks.click(
partial(process_tasks, func=examples.process_condition_subject_style_fusion_tasks),
inputs=[condition_subject_style_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
editing_with_subject_tasks.click(
partial(process_tasks, func=examples.process_editing_with_subject_tasks),
inputs=[editing_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
image_restoration_with_subject_tasks.click(
partial(process_tasks, func=examples.process_image_restoration_with_subject_tasks),
inputs=[image_restoration_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
# Initialize grid
model.set_grid_size(default_grid_h, default_grid_w)
# Connect event processing function to all components that need updating
output_components = all_image_inputs + rows + row_texts + [layout_prompt]
grid_h.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
grid_w.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
# Modify generate button click event
generate_btn.click(
fn=generate_image,
inputs=all_image_inputs + [seed, cfg, steps, upsampling_steps, upsampling_noise] + [layout_prompt, task_prompt, content_prompt],
outputs=output_gallery
)
return demo
@spaces.GPU()
def generate(
images,
prompts,
seed, cfg, steps,
upsampling_steps, upsampling_noise):
with torch.no_grad():
return model.process_images(
images=images,
prompts=prompts,
seed=seed,
cfg=cfg,
steps=steps,
upsampling_steps=upsampling_steps,
upsampling_noise=upsampling_noise)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="checkpoints/visualcloze-384-lora.pth")
parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
parser.add_argument("--resolution", type=int, default=384)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="checkpoints")
# Initialize model
model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision)
# Create Gradio demo
demo = create_demo(model)
# Start Gradio server
demo.launch()