File size: 18,654 Bytes
747ccea
 
fe67895
90e9b67
0fbbd89
749529a
071b7e9
9f4a039
79997b0
54a4802
3c698c1
 
 
0e5afe0
0fbbd89
6da265e
c36dc6b
6da265e
 
c36dc6b
6da265e
 
 
0fbbd89
90e9b67
 
c3ae439
90e9b67
 
 
 
 
747ccea
0fbbd89
8f71308
0fbbd89
5fd7b47
 
0fbbd89
9f4a039
0fbbd89
ca69132
d8a457b
749529a
9f4a039
 
 
 
 
 
 
 
749529a
 
071b7e9
2d978fc
9f4a039
f6e3821
9f4a039
 
 
 
 
747ccea
90e9b67
0fbbd89
d8a457b
9f4a039
 
 
90e9b67
 
 
9f4a039
 
2d978fc
 
90e9b67
 
9f4a039
 
 
 
0fbbd89
4f42976
0fbbd89
f6e3821
0fbbd89
884361c
 
 
 
0fbbd89
4f42976
 
 
 
 
 
f6e3821
4f42976
c8b6371
ca69132
0fbbd89
ca69132
d8a457b
ca69132
 
f6e3821
0fbbd89
c8b6371
749529a
 
d8a457b
4f42976
d8a457b
4f42976
c8b6371
f6e3821
0fbbd89
79997b0
f6e3821
2bb387f
749529a
f6e3821
 
 
0fbbd89
f6e3821
c8b6371
f6e3821
c8b6371
f6e3821
79997b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbbd89
66fa514
 
 
 
8f71308
3c698c1
2bb387f
f6e3821
8f71308
f6e3821
 
dea516f
 
 
 
 
3c698c1
 
 
 
 
 
 
 
 
66fa514
 
4f42976
79997b0
3c698c1
 
2442eca
1071ed2
3c698c1
 
 
6fd59f1
 
884361c
d8a457b
 
 
884361c
71edfae
95a32d4
dea516f
71edfae
 
 
749529a
 
3c698c1
 
 
 
 
 
 
 
 
2013128
 
1071ed2
 
0fbbd89
3c698c1
 
 
d8a457b
0fbbd89
d8a457b
3c698c1
 
 
 
 
1071ed2
3c698c1
2013128
0fbbd89
 
d8a457b
2013128
d8a457b
 
3c698c1
 
 
 
 
 
 
749529a
3c698c1
d8a457b
 
2013128
 
3c698c1
 
 
 
707bf52
1071ed2
707bf52
 
 
1071ed2
3c698c1
 
 
 
 
1071ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd59f1
 
884361c
 
 
95a32d4
884361c
 
 
c8b6371
ca69132
c8b6371
f6e3821
ca69132
c8b6371
 
ca69132
 
 
884361c
ca69132
884361c
ca69132
884361c
 
6fd59f1
 
dea516f
 
 
 
 
 
749529a
dea516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79997b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c698c1
747ccea
 
0fbbd89
749529a
79997b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback

# μΆ”λ‘  API ν΄λΌμ΄μ–ΈνŠΈ μ„€μ •
hf_client = InferenceClient(
    "CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)

def load_code(filename: str) -> str:
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            return file.read()
    except FileNotFoundError:
        return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
    except Exception as e:
        return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

def load_parquet(filename: str) -> str:
    try:
        df = pd.read_parquet(filename, engine='pyarrow')
        return df.head(10).to_markdown(index=False)
    except FileNotFoundError:
        return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
    except Exception as e:
        return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

def respond(
    message: str,
    history: List[Dict[str, str]],
    system_message: str = "",
    max_tokens: int = 4000,
    temperature: float = 0.5,
    top_p: float = 0.9,
    parquet_data: str = None
) -> str:
    # μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ μ„€μ •
    if parquet_data:
        system_prefix = """λ°˜λ“œμ‹œ ν•œκΈ€λ‘œ λ‹΅λ³€ν•  것. λ„ˆλŠ” μ—…λ‘œλ“œλœ 데이터λ₯Ό 기반으둜 μ§ˆλ¬Έμ— λ‹΅λ³€ν•˜λŠ” 역할을 ν•œλ‹€. 데이터λ₯Ό λΆ„μ„ν•˜μ—¬ μ‚¬μš©μžμ—κ²Œ 도움이 λ˜λŠ” 정보λ₯Ό μ œκ³΅ν•˜λΌ. 데이터λ₯Ό ν™œμš©ν•˜μ—¬ μƒμ„Έν•˜κ³  μ •ν™•ν•œ 닡변을 μ œκ³΅ν•˜λ˜, λ―Όκ°ν•œ μ •λ³΄λ‚˜ 개인 정보λ₯Ό λ…ΈμΆœν•˜μ§€ 마라."""
        try:
            df = pd.read_json(io.StringIO(parquet_data))
            # λ°μ΄ν„°μ˜ μš”μ•½ 정보 생성
            data_summary = df.describe(include='all').to_string()
            system_prefix += f"\n\nμ—…λ‘œλ“œλœ λ°μ΄ν„°μ˜ μš”μ•½ 정보:\n{data_summary}"
        except Exception as e:
            print(f"데이터 λ‘œλ“œ 쀑 였λ₯˜ λ°œμƒ: {str(e)}\n{traceback.format_exc()}")
            system_prefix += "\n\n데이터λ₯Ό λ‘œλ“œν•˜λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€."
    else:
        system_prefix = system_message or "λ„ˆλŠ” AI μ‘°μ–Έμž 역할이닀."

    # λ©”μ‹œμ§€ 생성
    prompt = system_prefix + "\n\n"
    for chat in history:
        if chat['role'] == 'user':
            prompt += f"μ‚¬μš©μž: {chat['content']}\n"
        else:
            prompt += f"AI: {chat['content']}\n"
    prompt += f"μ‚¬μš©μž: {message}\nAI:"

    try:
        # λͺ¨λΈμ— λ©”μ‹œμ§€ 전솑 및 응닡 λ°›κΈ°
        response = ""
        stream = hf_client.text_generation(
            prompt=prompt,
            max_new_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        )
        for msg in stream:
            if msg:
                response += msg
                yield response
    except Exception as e:
        error_message = f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}\n{traceback.format_exc()}"
        print(error_message)
        yield error_message

def upload_csv(file_path: str) -> Tuple[str, str]:
    try:
        # CSV 파일 읽기
        df = pd.read_csv(file_path, sep=',')
        # ν•„μˆ˜ 컬럼 확인
        required_columns = {'id', 'text', 'label', 'metadata'}
        available_columns = set(df.columns)
        missing_columns = required_columns - available_columns
        if missing_columns:
            return f"CSV νŒŒμΌμ— λ‹€μŒ ν•„μˆ˜ 컬럼이 λˆ„λ½λ˜μ—ˆμŠ΅λ‹ˆλ‹€: {', '.join(missing_columns)}", ""
        # 데이터 ν΄λ Œμ§•
        df.drop_duplicates(inplace=True)
        df.fillna('', inplace=True)
        # 데이터 μœ ν˜• μ΅œμ ν™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
        # Parquet 파일둜 λ³€ν™˜
        parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
        return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜κ³  λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_filename
    except Exception as e:
        return f"CSV 파일 μ—…λ‘œλ“œ 및 λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", ""

def upload_parquet(file_path: str) -> Tuple[str, str, str]:
    try:
        # Parquet 파일 읽기
        df = pd.read_parquet(file_path, engine='pyarrow')
        # Markdown으둜 λ³€ν™˜ν•˜μ—¬ 미리보기
        parquet_content = df.head(10).to_markdown(index=False)
        # DataFrame을 JSON λ¬Έμžμ—΄λ‘œ λ³€ν™˜
        parquet_json = df.to_json(orient='records', force_ascii=False)
        return "Parquet 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_json
    except Exception as e:
        return f"Parquet 파일 μ—…λ‘œλ“œ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", "", ""

def text_to_parquet(text: str) -> Tuple[str, str, str]:
    try:
        # ν…μŠ€νŠΈλ₯Ό DataFrame으둜 λ³€ν™˜ (각 행은 콀마둜 ꡬ뢄)
        data = [line.strip().split(',') for line in text.strip().split('\n')]
        df = pd.DataFrame(data, columns=['id', 'text', 'label', 'metadata'])
        # 데이터 μœ ν˜• μ΅œμ ν™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'string', 'metadata': 'string'})
        # Parquet 파일둜 λ³€ν™˜
        parquet_filename = 'text_to_parquet.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
        # Parquet 파일 λ‚΄μš© 미리보기
        parquet_content = load_parquet(parquet_filename)
        return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_filename
    except Exception as e:
        return f"ν…μŠ€νŠΈ λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", "", ""

def preprocess_text_with_llm(input_text: str) -> str:
    # LLMμ—κ²Œ μž…λ ₯ ν…μŠ€νŠΈλ₯Ό μ „μ²˜λ¦¬ν•˜λ„λ‘ μš”μ²­
    system_prompt = """당신은 μž…λ ₯된 κΈ΄ ν…μŠ€νŠΈλ₯Ό 데이터셋 ν˜•μ‹μ— 맞게 μ „μ²˜λ¦¬ν•˜λŠ” 역할을 ν•©λ‹ˆλ‹€.
- 데이터셋 ν˜•μ‹μ€ id,text,label,metadataμž…λ‹ˆλ‹€.
- 각 행은 μ‰Όν‘œλ‘œ κ΅¬λΆ„λ˜λ©°, ν…μŠ€νŠΈ 내에 μ‰Όν‘œκ°€ μžˆμ„ 경우 μ œκ±°ν•˜κ±°λ‚˜ λ‹€λ₯Έ 문자둜 λŒ€μ²΄ν•©λ‹ˆλ‹€.
- ν…μŠ€νŠΈλ₯Ό 의미 λ‹¨μœ„λ‘œ λΆ„ν• ν•˜κ³ , 적절히 λ¬Έμž₯을 μž¬κ΅¬μ„±ν•˜κ³  νŽΈμ§‘ν•˜μ—¬ μ΅œμ ν™”λœ λ¬Έμž₯으둜 λ§Œλ“­λ‹ˆλ‹€.
- 각 λ¬Έμž₯에 λŒ€ν•΄ idλ₯Ό λΆ€μ—¬ν•˜κ³ , μ μ ˆν•œ label(μΉ΄ν…Œκ³ λ¦¬)을 μ§€μ •ν•©λ‹ˆλ‹€.
- metadataμ—λŠ” μΆœμ²˜λ‚˜ λ‚ μ§œ λ“±μ˜ μΆ”κ°€ 정보λ₯Ό 포함할 수 μžˆμŠ΅λ‹ˆλ‹€.
- μ΅œμ’… κ²°κ³ΌλŠ” 각 행이 'id,text,label,metadata' ν˜•μ‹μ˜ CSV ν˜•νƒœκ°€ λ˜λ„λ‘ ν•©λ‹ˆλ‹€.
"""
    prompt = system_prompt + "\n\nμž…λ ₯ ν…μŠ€νŠΈ:\n" + input_text + "\n\nμ „μ²˜λ¦¬λœ 데이터셋:"
    try:
        response = ""
        stream = hf_client.text_generation(
            prompt=prompt,
            max_new_tokens=2000,
            temperature=0.5,
            top_p=0.9,
            stream=True,
        )
        for msg in stream:
            if msg:
                response += msg
        # μ‘λ‹΅μ—μ„œ μ „μ²˜λ¦¬λœ 데이터셋 λΆ€λΆ„λ§Œ μΆ”μΆœ
        processed_text = response.strip()
        return processed_text
    except Exception as e:
        error_message = f"μ „μ²˜λ¦¬ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}\n{traceback.format_exc()}"
        print(error_message)
        return error_message

# CSS μ„€μ •
css = """
footer {
    visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
    height: 700px;
    overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
    font-size: 14px;
}
/* μž…λ ₯μ°½ 배경색 및 κΈ€μžμƒ‰ λ³€κ²½ */
textarea, input[type="text"] {
    background-color: #ffffff; /* 흰색 λ°°κ²½ */
    color: #000000; /* 검정색 κΈ€μž */
}
/* 파일 μ—…λ‘œλ“œ μ˜μ—­ 높이 쑰절 */
#parquet-upload-area {
    max-height: 150px;
    overflow-y: auto;
}
/* 초기 μ„€λͺ… 글씨 크기 쑰절 */
#initial-description {
    font-size: 14px;
}
"""

# Gradio Blocks μΈν„°νŽ˜μ΄μŠ€ μ„€μ •
with gr.Blocks(css=css) as demo:
    gr.Markdown("# My RAG: LLM이 λ‚˜λ§Œμ˜ λ°μ΄ν„°λ‘œ ν•™μŠ΅ν•œ μ½˜ν…μΈ  생성/λ‹΅λ³€", elem_id="initial-description")
    gr.Markdown(
        "### 1) λ‚˜λ§Œμ˜ 데이터λ₯Ό μž…λ ₯ λ˜λŠ” CSV μ—…λ‘œλ“œλ‘œ Parquet 데이터셋 μžλ™ λ³€ν™˜ 2) Parquet 데이터셋을 μ—…λ‘œλ“œν•˜λ©΄, LLM이 맞좀 ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬ 응닡\n"
        "### Tip) '예제'λ₯Ό 톡해 λ‹€μ–‘ν•œ ν™œμš© 방법을 μ²΄ν—˜ν•˜κ³  μ‘μš©ν•΄ λ³΄μ„Έμš”, 데이터셋 μ—…λ‘œλ“œμ‹œ λ―Έλ¦¬λ³΄κΈ°λŠ” 10건만 좜λ ₯",
        elem_id="initial-description"
    )

    # 첫 번째 νƒ­: 챗봇 데이터 μ—…λ‘œλ“œ (νƒ­ 이름 λ³€κ²½: "My 데이터셋+LLM")
    with gr.Tab("My 데이터셋+LLM"):
        gr.Markdown("### LLMκ³Ό λŒ€ν™”ν•˜κΈ°")
        chatbot_data_upload = gr.Chatbot(label="챗봇", type="messages", elem_id="chatbot-data-upload")
        msg_data_upload = gr.Textbox(label="λ©”μ‹œμ§€ μž…λ ₯", placeholder="여기에 λ©”μ‹œμ§€λ₯Ό μž…λ ₯ν•˜μ„Έμš”...")
        send_data_upload = gr.Button("전솑")

        with gr.Accordion("μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ 및 μ˜΅μ…˜ μ„€μ •", open=False):
            system_message = gr.Textbox(label="System Message", value="λ„ˆλŠ” AI μ‘°μ–Έμž 역할이닀.")
            max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
            top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")

        parquet_data_state = gr.State()

        def handle_message_data_upload(
            message: str,
            history: List[Dict[str, str]],
            system_message: str,
            max_tokens: int,
            temperature: float,
            top_p: float,
            parquet_data: str
        ):
            history = history or []
            try:
                # μ‚¬μš©μžμ˜ λ©”μ‹œμ§€λ₯Ό νžˆμŠ€ν† λ¦¬μ— μΆ”κ°€
                history.append({"role": "user", "content": message})
                # 응닡 생성
                response_gen = respond(
                    message, history, system_message, max_tokens, temperature, top_p, parquet_data
                )
                partial_response = ""
                for partial in response_gen:
                    partial_response = partial
                    # λŒ€ν™” λ‚΄μ—­ μ—…λ°μ΄νŠΈ
                    display_history = history + [
                        {"role": "assistant", "content": partial_response}
                    ]
                    yield display_history, ""
                # μ–΄μ‹œμŠ€ν„΄νŠΈμ˜ 응닡을 νžˆμŠ€ν† λ¦¬μ— μΆ”κ°€
                history.append({"role": "assistant", "content": partial_response})
            except Exception as e:
                response = f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
                history.append({"role": "assistant", "content": response})
                yield history, ""

        send_data_upload.click(
            handle_message_data_upload,
            inputs=[
                msg_data_upload,
                chatbot_data_upload,
                system_message,
                max_tokens,
                temperature,
                top_p,
                parquet_data_state,  # parquet_data_stateλ₯Ό μ‚¬μš©ν•˜μ—¬ μ—…λ‘œλ“œλœ 데이터λ₯Ό 전달
            ],
            outputs=[chatbot_data_upload, msg_data_upload],
            queue=True
        )

        # 예제 μΆ”κ°€
        with gr.Accordion("예제", open=False):
            gr.Examples(
                examples=[
                    ["μ—…λ‘œλ“œλœ 데이터셋에 λŒ€ν•΄ μš”μ•½ μ„€λͺ…ν•˜λΌ."],
                    ["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, λ³Έ μ„œλΉ„μŠ€λ₯Ό SEO μ΅œμ ν™”ν•˜μ—¬ λΈ”λ‘œκ·Έ 포슀트(κ°œμš”, λ°°κ²½ 및 ν•„μš”μ„±, κΈ°μ‘΄ μœ μ‚¬ μ œν’ˆ/μ„œλΉ„μŠ€μ™€ λΉ„κ΅ν•˜μ—¬ 특μž₯점, ν™œμš©μ²˜, κ°€μΉ˜, κΈ°λŒ€νš¨κ³Ό, 결둠을 포함)둜 4000 토큰 이상 μž‘μ„±ν•˜λΌ"],
                    ["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, μ‚¬μš© 방법과 차별점, νŠΉμ§•, 강점을 μ€‘μ‹¬μœΌλ‘œ 4000 토큰 이상 유튜브 μ˜μƒ 슀크립트 ν˜•νƒœλ‘œ μž‘μ„±ν•˜λΌ"],
                    ["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, μ œν’ˆ 상세 νŽ˜μ΄μ§€ ν˜•μ‹μ˜ λ‚΄μš©μ„ 4000 토큰 이상 μžμ„Ένžˆ μ„€λͺ…ν•˜λΌ"],
                    ["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, FAQ 20건을 μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜λΌ. 4000토큰 이상 μ‚¬μš©ν•˜λΌ."],
                    ["μ—…λ‘œλ“œλœ 데이터셋 νŒŒμΌμ„ ν•™μŠ΅ λ°μ΄ν„°λ‘œ ν™œμš©ν•˜μ—¬, νŠΉν—ˆ μΆœμ›μ— ν™œμš©ν•  기술 및 λΉ„μ¦ˆλ‹ˆμŠ€ λͺ¨λΈ 츑면을 ν¬ν•¨ν•˜μ—¬ νŠΉν—ˆ μΆœμ›μ„œ ꡬ성에 맞게 ν˜μ‹ μ μΈ 창의 발λͺ… λ‚΄μš©μ„ μ€‘μ‹¬μœΌλ‘œ 4000 토큰 이상 μž‘μ„±ν•˜λΌ."],
                ],
                inputs=msg_data_upload,
                label="예제 선택",
            )

        # Parquet 파일 μ—…λ‘œλ“œλ₯Ό ν™”λ©΄ ν•˜λ‹¨μœΌλ‘œ 이동
        gr.Markdown("### Parquet 파일 μ—…λ‘œλ“œ")
        with gr.Row():
            with gr.Column():
                parquet_upload = gr.File(
                    label="Parquet 파일 μ—…λ‘œλ“œ", type="filepath", elem_id="parquet-upload-area"
                )
                parquet_upload_button = gr.Button("μ—…λ‘œλ“œ")
                parquet_upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
                parquet_preview_chat = gr.Markdown(label="Parquet 파일 미리보기")

                def handle_parquet_upload(file_path: str):
                    message, parquet_content, parquet_json = upload_parquet(file_path)
                    if parquet_json:
                        return message, parquet_content, parquet_json
                    else:
                        return message, "", ""

                parquet_upload_button.click(
                    handle_parquet_upload,
                    inputs=parquet_upload,
                    outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
                )

    # 두 번째 νƒ­: 데이터 λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "CSV to My 데이터셋")
    with gr.Tab("CSV to My 데이터셋"):
        gr.Markdown("### CSV 파일 μ—…λ‘œλ“œ 및 Parquet λ³€ν™˜")
        with gr.Row():
            with gr.Column():
                csv_file = gr.File(label="CSV 파일 μ—…λ‘œλ“œ", type="filepath")
                upload_button = gr.Button("μ—…λ‘œλ“œ 및 λ³€ν™˜")
                upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
                parquet_preview = gr.Markdown(label="Parquet 파일 미리보기")
                download_button = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)

                def handle_csv_upload(file_path: str):
                    message, parquet_filename = upload_csv(file_path)
                    if parquet_filename:
                        parquet_content = load_parquet(parquet_filename)
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                upload_button.click(
                    handle_csv_upload,
                    inputs=csv_file,
                    outputs=[upload_status, parquet_preview, download_button]
                )

    # μ„Έ 번째 νƒ­: ν…μŠ€νŠΈ to csv to parquet λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "Text to My 데이터셋")
    with gr.Tab("Text to My 데이터셋"):
        gr.Markdown("### ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ CSV둜 λ³€ν™˜ ν›„ Parquet으둜 μžλ™ μ „ν™˜λ©λ‹ˆλ‹€.")
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="ν…μŠ€νŠΈ μž…λ ₯ (각 행은 `id,text,label,metadata` ν˜•μ‹μœΌλ‘œ μž…λ ₯)",
                    lines=10,
                    placeholder="예: 1,μ΄μˆœμ‹ ,μž₯κ΅°,거뢁선\n2,원균,μž₯κ΅°,λͺ¨ν•¨\n3,μ„ μ‘°,μ™•,μ‹œκΈ°\n4,λ„μš”ν† λ―Έ νžˆλ°μš”μ‹œ,μ™•,침랡"
                )
                convert_button = gr.Button("λ³€ν™˜ 및 λ‹€μš΄λ‘œλ“œ")
                convert_status = gr.Textbox(label="λ³€ν™˜ μƒνƒœ", interactive=False)
                parquet_preview_convert = gr.Markdown(label="Parquet 파일 미리보기")
                download_parquet_convert = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)

                def handle_text_to_parquet(text: str):
                    message, parquet_content, parquet_filename = text_to_parquet(text)
                    if parquet_filename:
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                convert_button.click(
                    handle_text_to_parquet,
                    inputs=text_input,
                    outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
                )

    # λ„€ 번째 νƒ­: ν…μŠ€νŠΈλ₯Ό 데이터셋 ν˜•μ‹μœΌλ‘œ μ „μ²˜λ¦¬ (νƒ­ 이름: "Text Preprocessing with LLM")
    with gr.Tab("Text Preprocessing with LLM"):
        gr.Markdown("### ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ LLM이 데이터셋 ν˜•μ‹μ— 맞게 μ „μ²˜λ¦¬ν•˜μ—¬ 좜λ ₯ν•©λ‹ˆλ‹€.")
        with gr.Row():
            with gr.Column():
                raw_text_input = gr.Textbox(
                    label="ν…μŠ€νŠΈ μž…λ ₯",
                    lines=15,
                    placeholder="여기에 μ „μ²˜λ¦¬ν•  ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”..."
                )
                preprocess_button = gr.Button("μ „μ²˜λ¦¬ μ‹€ν–‰")
                preprocess_status = gr.Textbox(label="μ „μ²˜λ¦¬ μƒνƒœ", interactive=False)
                processed_text_output = gr.Textbox(
                    label="μ „μ²˜λ¦¬λœ 데이터셋 좜λ ₯",
                    lines=15,
                    interactive=False
                )

                def handle_text_preprocessing(input_text: str):
                    preprocess_status.value = "μ „μ²˜λ¦¬ μ€‘μž…λ‹ˆλ‹€. μž μ‹œλ§Œ κΈ°λ‹€λ €μ£Όμ„Έμš”..."
                    processed_text = preprocess_text_with_llm(input_text)
                    preprocess_status.value = "μ „μ²˜λ¦¬κ°€ μ™„λ£Œλ˜μ—ˆμŠ΅λ‹ˆλ‹€."
                    return preprocess_status.value, processed_text

                preprocess_button.click(
                    handle_text_preprocessing,
                    inputs=raw_text_input,
                    outputs=[preprocess_status, processed_text_output]
                )

    gr.Markdown("### [email protected]", elem_id="initial-description")

if __name__ == "__main__":
    demo.launch()