File size: 22,463 Bytes
747ccea fe67895 90e9b67 0fbbd89 749529a 071b7e9 9f4a039 46b5d6c 79997b0 54a4802 3c698c1 0e5afe0 0fbbd89 6da265e c36dc6b 6da265e d59bb1e 6da265e 0fbbd89 90e9b67 c3ae439 90e9b67 747ccea 0fbbd89 8f71308 0fbbd89 5fd7b47 0fbbd89 9f4a039 0fbbd89 ca69132 d8a457b 749529a 9f4a039 749529a 071b7e9 2d978fc 9f4a039 f6e3821 9f4a039 747ccea 90e9b67 0fbbd89 d8a457b 9f4a039 90e9b67 9f4a039 2d978fc 90e9b67 9f4a039 0fbbd89 4f42976 0fbbd89 f6e3821 0fbbd89 884361c 0fbbd89 4f42976 f6e3821 4f42976 c8b6371 ca69132 0fbbd89 ca69132 d8a457b ca69132 f6e3821 0fbbd89 c8b6371 749529a d8a457b 4f42976 d8a457b 4f42976 c8b6371 f6e3821 b058138 46b5d6c e03d258 46b5d6c 2bb387f 749529a f6e3821 0fbbd89 f6e3821 c8b6371 f6e3821 46b5d6c f6e3821 8871a08 79997b0 b50c10b b25fdc4 b9810ca 79997b0 b25fdc4 8871a08 79997b0 b25fdc4 79997b0 b50c10b b25fdc4 b50c10b 79997b0 b25fdc4 79997b0 8871a08 0fbbd89 66fa514 8f71308 3c698c1 2bb387f f6e3821 8f71308 f6e3821 dea516f 3c698c1 66fa514 4f42976 79997b0 3c698c1 2442eca 1071ed2 3c698c1 b50c10b 6fd59f1 884361c d8a457b 884361c 71edfae 95a32d4 dea516f 71edfae 749529a 3c698c1 2013128 1071ed2 0fbbd89 3c698c1 d8a457b 0fbbd89 d8a457b 3c698c1 1071ed2 3c698c1 2013128 0fbbd89 d8a457b 2013128 d8a457b 5d1bacd d8a457b 2013128 3c698c1 707bf52 1071ed2 707bf52 1071ed2 3c698c1 1071ed2 6fd59f1 884361c 95a32d4 884361c c8b6371 ca69132 c8b6371 f6e3821 ca69132 c8b6371 ca69132 884361c ca69132 884361c ca69132 884361c 6fd59f1 dea516f 46b5d6c dea516f b50c10b 79997b0 b50c10b 79997b0 b50c10b 79997b0 b50c10b 79997b0 5d1bacd b50c10b 79997b0 b50c10b b9810ca b50c10b b9810ca b50c10b 5d1bacd b50c10b 6311e3f b50c10b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback
import csv
# μΆλ‘ API ν΄λΌμ΄μΈνΈ μ€μ
hf_client = InferenceClient(
"CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def respond(
message: str,
history: List[Dict[str, str]],
system_message: str = "",
max_tokens: int = 4000,
temperature: float = 0.5,
top_p: float = 0.9,
parquet_data: str = None
) -> str:
# μμ€ν
ν둬ννΈ μ€μ
if parquet_data:
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ
λ‘λλ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ§λ¬Έμ λ΅λ³νλ μν μ νλ€. λ°μ΄ν°λ₯Ό λΆμνμ¬ μ¬μ©μμκ² λμμ΄ λλ μ 보λ₯Ό μ 곡νλΌ. λ°μ΄ν°λ₯Ό νμ©νμ¬ μμΈνκ³ μ νν λ΅λ³μ μ 곡νλ, λ―Όκ°ν μ 보λ κ°μΈ μ 보λ₯Ό λ
ΈμΆνμ§ λ§λΌ."""
try:
df = pd.read_json(io.StringIO(parquet_data))
# λ°μ΄ν°μ μμ½ μ 보 μμ±
data_summary = df.describe(include='all').to_string()
system_prefix += f"\n\nμ
λ‘λλ λ°μ΄ν°μ μμ½ μ 보:\n{data_summary}"
except Exception as e:
print(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {str(e)}\n{traceback.format_exc()}")
system_prefix += "\n\nλ°μ΄ν°λ₯Ό λ‘λνλ μ€ μ€λ₯κ° λ°μνμ΅λλ€."
else:
system_prefix = system_message or "λλ AI μ‘°μΈμ μν μ΄λ€."
# λ©μμ§ μμ±
prompt = system_prefix + "\n\n"
for chat in history:
if chat['role'] == 'user':
prompt += f"μ¬μ©μ: {chat['content']}\n"
else:
prompt += f"AI: {chat['content']}\n"
prompt += f"μ¬μ©μ: {message}\nAI:"
try:
# λͺ¨λΈμ λ©μμ§ μ μ‘ λ° μλ΅ λ°κΈ°
response = ""
stream = hf_client.text_generation(
prompt=prompt,
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for msg in stream:
if msg:
response += msg
yield response
except Exception as e:
error_message = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
yield error_message
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
# CSV νμΌ μ½κΈ°
df = pd.read_csv(file_path, sep=',')
# νμ μ»¬λΌ νμΈ
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νμΌμ λ€μ νμ 컬λΌμ΄ λλ½λμμ΅λλ€: {', '.join(missing_columns)}", ""
# λ°μ΄ν° ν΄λ μ§
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλκ³ λ³νλμμ΅λλ€.", parquet_filename
except Exception as e:
return f"CSV νμΌ μ
λ‘λ λ° λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, str]:
try:
# Parquet νμΌ μ½κΈ°
df = pd.read_parquet(file_path, engine='pyarrow')
# MarkdownμΌλ‘ λ³ννμ¬ λ―Έλ¦¬λ³΄κΈ°
parquet_content = df.head(10).to_markdown(index=False)
# DataFrameμ JSON λ¬Έμμ΄λ‘ λ³ν
parquet_json = df.to_json(orient='records', force_ascii=False)
return "Parquet νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλμμ΅λλ€.", parquet_content, parquet_json
except Exception as e:
return f"Parquet νμΌ μ
λ‘λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", ""
def text_to_parquet(text: str) -> Tuple[str, str, str]:
try:
from io import StringIO
# CSV λ°μ΄ν°λ₯Ό StringIOλ₯Ό ν΅ν΄ μ½κΈ°
csv_data = StringIO(text)
df = pd.read_csv(
csv_data,
sep=',',
dtype=str,
quoting=csv.QUOTE_ALL, # λͺ¨λ νλλ₯Ό ν°λ°μ΄νλ‘ κ°μΈλ κ²μΌλ‘ μ²λ¦¬
escapechar='\\', # μ΄μ€μΌμ΄ν λ¬Έμ μ€μ
engine='python', # Python μμ§ μ¬μ©
header=None, # 첫 λ²μ§Έ νμ μ΄ μ΄λ¦μΌλ‘ μ¬μ©νμ§ μμ
names=['id', 'text', 'label', 'metadata'] # μ΄ μ΄λ¦ μ§μ
)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'string', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet νμΌ λ΄μ© 미리보기
parquet_content = load_parquet(parquet_filename)
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ λ³νλμμ΅λλ€.", parquet_content, parquet_filename
except Exception as e:
error_message = f"ν
μ€νΈ λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}\n{traceback.format_exc()}"
print(error_message)
return error_message, "", ""
def preprocess_text_with_llm(input_text: str) -> str:
if not input_text.strip():
return "μ
λ ₯ ν
μ€νΈκ° λΉμ΄μμ΅λλ€."
system_prompt = """λΉμ μ λ°μ΄ν° μ μ²λ¦¬ μ λ¬Έκ°μ
λλ€. μ
λ ₯λ ν
μ€νΈλ₯Ό CSV λ°μ΄ν°μ
νμμΌλ‘ λ³ννμΈμ.
κ·μΉ:
1. μΆλ ₯ νμ: id,text,label,metadata
2. id: 1λΆν° μμνλ μμ°¨μ λ²νΈ
3. text: μλ―Έ μλ λ¨μλ‘ λΆλ¦¬λ ν
μ€νΈ
4. label: ν
μ€νΈμ μ£Όμ λ μΉ΄ν
κ³ λ¦¬
5. metadata: μΆκ° μ 보(λ μ§, μΆμ² λ±)
μ£Όμμ¬ν:
- ν
μ€νΈμ μΌνκ° μμΌλ©΄ ν°λ°μ΄νλ‘ κ°μΈκΈ°
- ν°λ°μ΄νλ λ°±μ¬λμλ‘ μ΄μ€μΌμ΄ν μ²λ¦¬
- κ° νμ μλ‘μ΄ μ€λ‘ ꡬλΆ
- λͺ¨λ νλλ μΌνλ‘ κ΅¬λΆ"""
full_prompt = f"{system_prompt}\n\n{input_text}\n\nμΆλ ₯:"
try:
response = ""
stream = hf_client.text_generation(
prompt=full_prompt,
max_new_tokens=4000,
temperature=0.3,
top_p=0.9,
stream=True,
)
for msg in stream:
if msg:
response += msg
# μλ΅ μ μ
processed_text = response.strip()
# CSV νμ κ²μ¦
try:
from io import StringIO
import csv
csv.reader(StringIO(processed_text))
return processed_text
except csv.Error:
return "LLMμ΄ μ¬λ°λ₯Έ CSV νμμ μμ±νμ§ λͺ»νμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ."
except Exception as e:
error_message = f"μ μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(error_message)
return error_message
# CSS μ€μ
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 700px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
/* μ
λ ₯μ°½ λ°°κ²½μ λ° κΈμμ λ³κ²½ */
textarea, input[type="text"] {
background-color: #ffffff; /* ν°μ λ°°κ²½ */
color: #000000; /* κ²μ μ κΈμ */
}
/* νμΌ μ
λ‘λ μμ λμ΄ μ‘°μ */
#parquet-upload-area {
max-height: 150px;
overflow-y: auto;
}
/* μ΄κΈ° μ€λͺ
κΈμ¨ ν¬κΈ° μ‘°μ */
#initial-description {
font-size: 14px;
}
"""
# Gradio Blocks μΈν°νμ΄μ€ μ€μ
with gr.Blocks(css=css) as demo:
gr.Markdown("# My RAG: LLMμ΄ λλ§μ λ°μ΄ν°λ‘ νμ΅ν μ½ν
μΈ μμ±/λ΅λ³", elem_id="initial-description")
gr.Markdown(
"### 1) λλ§μ λ°μ΄ν°λ₯Ό μ
λ ₯ λλ CSV μ
λ‘λλ‘ Parquet λ°μ΄ν°μ
μλ λ³ν 2) Parquet λ°μ΄ν°μ
μ μ
λ‘λνλ©΄, LLMμ΄ λ§μΆ€ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬ μλ΅\n"
"### Tip) 'μμ 'λ₯Ό ν΅ν΄ λ€μν νμ© λ°©λ²μ 체ννκ³ μμ©ν΄ 보μΈμ, λ°μ΄ν°μ
μ
λ‘λμ 미리보기λ 10κ±΄λ§ μΆλ ₯",
elem_id="initial-description"
)
# 첫 λ²μ§Έ ν: μ±λ΄ λ°μ΄ν° μ
λ‘λ (ν μ΄λ¦ λ³κ²½: "My λ°μ΄ν°μ
+LLM")
with gr.Tab("My λ°μ΄ν°μ
+LLM"):
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot_data_upload = gr.Chatbot(label="μ±λ΄", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send_data_upload = gr.Button("μ μ‘")
with gr.Accordion("μμ€ν
ν둬ννΈ λ° μ΅μ
μ€μ ", open=False):
system_message = gr.Textbox(label="System Message", value="λλ AI μ‘°μΈμ μν μ΄λ€.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
parquet_data_state = gr.State()
def handle_message_data_upload(
message: str,
history: List[Dict[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
parquet_data: str
):
history = history or []
try:
# μ¬μ©μμ λ©μμ§λ₯Ό νμ€ν 리μ μΆκ°
history.append({"role": "user", "content": message})
# μλ΅ μμ±
response_gen = respond(
message, history, system_message, max_tokens, temperature, top_p, parquet_data
)
partial_response = ""
for partial in response_gen:
partial_response = partial
# λν λ΄μ μ
λ°μ΄νΈ
display_history = history + [
{"role": "assistant", "content": partial_response}
]
yield display_history, ""
# μ΄μμ€ν΄νΈμ μλ΅μ νμ€ν 리μ μΆκ°
history.append({"role": "assistant", "content": partial_response})
except Exception as e:
response = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
history.append({"role": "assistant", "content": response})
yield history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[
msg_data_upload,
chatbot_data_upload,
system_message,
max_tokens,
temperature,
top_p,
parquet_data_state, # parquet_data_stateλ₯Ό μ¬μ©νμ¬ μ
λ‘λλ λ°μ΄ν°λ₯Ό μ λ¬
],
outputs=[chatbot_data_upload, msg_data_upload],
queue=True
)
# μμ μΆκ°
with gr.Accordion("μμ ", open=False):
gr.Examples(
examples=[
["μ
λ‘λλ λ°μ΄ν°μ
μ λν΄ μμ½ μ€λͺ
νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈ(κ°μ, λ°°κ²½ λ° νμμ±, κΈ°μ‘΄ μ μ¬ μ ν/μλΉμ€μ λΉκ΅νμ¬ νΉμ₯μ , νμ©μ², κ°μΉ, κΈ°λν¨κ³Ό, κ²°λ‘ μ ν¬ν¨)λ‘ 4000 ν ν° μ΄μ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, μ ν μμΈ νμ΄μ§ νμμ λ΄μ©μ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."],
["μ
λ‘λλ λ°μ΄ν°μ
νμΌμ νμ΅ λ°μ΄ν°λ‘ νμ©νμ¬, νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€ λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² νμ μ μΈ μ°½μ λ°λͺ
λ΄μ©μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μμ±νλΌ."],
],
inputs=msg_data_upload,
label="μμ μ ν",
)
# Parquet νμΌ μ
λ‘λλ₯Ό νλ©΄ νλ¨μΌλ‘ μ΄λ
gr.Markdown("### Parquet νμΌ μ
λ‘λ")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(
label="Parquet νμΌ μ
λ‘λ", type="filepath", elem_id="parquet-upload-area"
)
parquet_upload_button = gr.Button("μ
λ‘λ")
parquet_upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
def handle_parquet_upload(file_path: str):
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", ""
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
# λ λ²μ§Έ ν: λ°μ΄ν° λ³ν (ν μ΄λ¦ λ³κ²½: "CSV to My λ°μ΄ν°μ
")
with gr.Tab("CSV to My λ°μ΄ν°μ
"):
gr.Markdown("### CSV νμΌ μ
λ‘λ λ° Parquet λ³ν")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV νμΌ μ
λ‘λ", type="filepath")
upload_button = gr.Button("μ
λ‘λ λ° λ³ν")
upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_button = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_csv_upload(file_path: str):
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
parquet_content = load_parquet(parquet_filename)
return message, parquet_content, parquet_filename
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
# μΈ λ²μ§Έ ν: ν
μ€νΈ to csv to parquet λ³ν (ν μ΄λ¦ λ³κ²½: "Text to My λ°μ΄ν°μ
")
with gr.Tab("Text to My λ°μ΄ν°μ
"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ CSVλ‘ λ³ν ν ParquetμΌλ‘ μλ μ νλ©λλ€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯ (κ° νμ `id,text,label,metadata` νμμΌλ‘ μ
λ ₯)",
lines=10,
placeholder='μ: 1,"μ΄μμ ","μ₯κ΅°","κ±°λΆμ "\n2,"μκ· ","μ₯κ΅°","λͺ¨ν¨"\n3,"μ μ‘°","μ","μκΈ°"\n4,"λμν λ―Έ νλ°μμ","μ","μΉ¨λ΅"'
)
convert_button = gr.Button("λ³ν λ° λ€μ΄λ‘λ")
convert_status = gr.Textbox(label="λ³ν μν", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_parquet_convert = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_text_to_parquet(text: str):
message, parquet_content, parquet_filename = text_to_parquet(text)
if parquet_filename:
return message, parquet_content, parquet_filename
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# λ€ λ²μ§Έ ν: ν
μ€νΈλ₯Ό λ°μ΄ν°μ
νμμΌλ‘ μ μ²λ¦¬ (κ°μ λ λ²μ )
with gr.Tab("Text Preprocessing with LLM"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ LLMμ΄ λ°μ΄ν°μ
νμμ λ§κ² μ μ²λ¦¬νμ¬ μΆλ ₯ν©λλ€.")
with gr.Row():
with gr.Column():
raw_text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯",
lines=15,
placeholder="μ¬κΈ°μ μ μ²λ¦¬ν ν
μ€νΈλ₯Ό μ
λ ₯νμΈμ..."
)
with gr.Row():
preprocess_button = gr.Button("μ μ²λ¦¬ μ€ν", variant="primary")
clear_button = gr.Button("μ΄κΈ°ν")
preprocess_status = gr.Textbox(
label="μ μ²λ¦¬ μν",
interactive=False,
value="λκΈ° μ€..."
)
processed_text_output = gr.Textbox(
label="μ μ²λ¦¬λ λ°μ΄ν°μ
μΆλ ₯",
lines=15,
interactive=False
)
# Parquet λ³ν λ° λ€μ΄λ‘λ μΉμ
with gr.Row():
convert_to_parquet_button = gr.Button("ParquetμΌλ‘ λ³ν", visible=True)
download_parquet = gr.File(
label="λ³νλ Parquet νμΌ λ€μ΄λ‘λ",
visible=False
)
def handle_text_preprocessing(input_text: str):
if not input_text.strip():
return "μ
λ ₯ ν
μ€νΈκ° μμ΅λλ€.", ""
try:
preprocess_status_msg = "μ μ²λ¦¬λ₯Ό μμν©λλ€..."
yield preprocess_status_msg, ""
processed_text = preprocess_text_with_llm(input_text)
if processed_text:
preprocess_status_msg = "μ μ²λ¦¬κ° μλ£λμμ΅λλ€."
yield preprocess_status_msg, processed_text
else:
preprocess_status_msg = "μ μ²λ¦¬ κ²°κ³Όκ° μμ΅λλ€."
yield preprocess_status_msg, ""
except Exception as e:
error_msg = f"μ²λ¦¬ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
yield error_msg, ""
def clear_inputs():
return "", "λκΈ° μ€...", ""
def convert_to_parquet_file(processed_text: str):
if not processed_text.strip():
return "λ³νν ν
μ€νΈκ° μμ΅λλ€.", None
try:
message, parquet_content, parquet_filename = text_to_parquet(processed_text)
if parquet_filename:
return message, parquet_filename
return message, None
except Exception as e:
return f"Parquet λ³ν μ€ μ€λ₯ λ°μ: {str(e)}", None
# μ΄λ²€νΈ νΈλ€λ¬ μ°κ²°
preprocess_button.click(
handle_text_preprocessing,
inputs=[raw_text_input],
outputs=[preprocess_status, processed_text_output],
queue=True
)
clear_button.click(
clear_inputs,
outputs=[raw_text_input, preprocess_status, processed_text_output]
)
convert_to_parquet_button.click(
convert_to_parquet_file,
inputs=[processed_text_output],
outputs=[preprocess_status, download_parquet]
)
# μμ ν
μ€νΈ μΆκ°
with gr.Accordion("μμ ν
μ€νΈ", open=False):
gr.Examples(
examples=[
["μ΄μμ μ μ‘°μ μ€κΈ°μ 무μ μ΄λ€. κ·Έλ μμ§μλ λΉμ ν΄κ΅°μ μ΄λμλ€. κ±°λΆμ μ λ§λ€μ΄ μκ΅°κ³Ό μΈμ λ€."],
["μΈκ³΅μ§λ₯μ μ»΄ν¨ν° κ³Όνμ ν λΆμΌμ΄λ€. κΈ°κ³νμ΅μ μΈκ³΅μ§λ₯μ νμ λΆμΌμ΄λ€. λ₯λ¬λμ κΈ°κ³νμ΅μ ν λ°©λ²μ΄λ€."]
],
inputs=raw_text_input,
label="μμ μ ν"
)
gr.Markdown("### [email protected]", elem_id="initial-description")
if __name__ == "__main__":
demo.launch(share=True) |