Spaces:
Sleeping
Sleeping
File size: 6,082 Bytes
03bf0d5 37eb186 925795a 03bf0d5 0be7c95 03bf0d5 0be7c95 03bf0d5 37eb186 03bf0d5 0be7c95 911a038 925795a 0be7c95 925795a 03bf0d5 0be7c95 03bf0d5 0be7c95 911a038 ddc98da 911a038 ddc98da 03bf0d5 0be7c95 925795a 03bf0d5 925795a 03bf0d5 0be7c95 ddc98da 03bf0d5 0be7c95 03bf0d5 0be7c95 925795a 37eb186 ddc98da 03bf0d5 ddc98da 03bf0d5 0be7c95 911a038 03bf0d5 911a038 03bf0d5 37eb186 925795a 03bf0d5 925795a 03bf0d5 925795a 03bf0d5 925795a 03bf0d5 911a038 03bf0d5 0be7c95 ddc98da 03bf0d5 925795a ddc98da 911a038 03bf0d5 911a038 03bf0d5 0be7c95 911a038 0be7c95 911a038 03bf0d5 911a038 0be7c95 925795a ddc98da 03bf0d5 925795a ddc98da 03bf0d5 925795a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import gradio as gr
import numpy as np
import google.generativeai as genai
import faiss
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
from dotenv import load_dotenv
import threading
# Load environment variables
load_dotenv()
# Configuration
MODEL_NAME = "all-MiniLM-L6-v2"
GENAI_MODEL = "gemini-pro"
DATASET_NAME = "midrees2806/7K_Dataset"
CHUNK_SIZE = 500
TOP_K = 3
class GeminiRAGSystem:
def __init__(self):
self.index = None
self.chunks = []
self.dataset_loaded = False
self.loading_error = None
self.gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize embedding model
try:
self.embedding_model = SentenceTransformer(MODEL_NAME)
except Exception as e:
raise RuntimeError(f"Failed to initialize embedding model: {str(e)}")
# Configure Gemini
if self.gemini_api_key:
genai.configure(api_key=self.gemini_api_key)
# Start dataset loading in background
self.load_dataset_in_background()
def load_dataset_in_background(self):
"""Load dataset in a background thread"""
def load_task():
try:
# Load dataset directly
dataset = load_dataset(
DATASET_NAME,
split='train',
download_mode="force_redownload" # Fixes extraction error
)
# Process dataset
if 'text' in dataset.features:
self.chunks = dataset['text'][:1000] # Limit to first 1000 entries
elif 'context' in dataset.features:
self.chunks = dataset['context'][:1000]
else:
raise ValueError("Dataset must have 'text' or 'context' field")
# Create embeddings
embeddings = self.embedding_model.encode(
self.chunks,
show_progress_bar=False,
convert_to_numpy=True
)
self.index = faiss.IndexFlatL2(embeddings.shape[1])
self.index.add(embeddings.astype('float32'))
self.dataset_loaded = True
except Exception as e:
self.loading_error = str(e)
print(f"Dataset loading failed: {str(e)}")
# Start the loading thread
threading.Thread(target=load_task, daemon=True).start()
def get_relevant_context(self, query: str) -> str:
"""Retrieve most relevant chunks"""
if not self.index:
return ""
try:
query_embed = self.embedding_model.encode(
[query],
convert_to_numpy=True
).astype('float32')
_, indices = self.index.search(query_embed, k=TOP_K)
return "\n\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
except Exception as e:
print(f"Search error: {str(e)}")
return ""
def generate_response(self, query: str) -> str:
"""Generate response with robust error handling"""
if not self.dataset_loaded:
if self.loading_error:
return f"⚠️ Dataset loading failed: {self.loading_error}"
return "⚠️ Dataset is still loading, please wait..."
if not self.gemini_api_key:
return "🔑 Please set your Gemini API key in environment variables"
context = self.get_relevant_context(query)
if not context:
return "No relevant context found"
prompt = f"""Answer based on this context:
{context}
Question: {query}
Answer concisely:"""
try:
model = genai.GenerativeModel(GENAI_MODEL)
response = model.generate_content(prompt)
return response.text
except Exception as e:
return f"⚠️ API Error: {str(e)}"
# Initialize system
try:
rag_system = GeminiRAGSystem()
except Exception as e:
raise RuntimeError(f"System initialization failed: {str(e)}")
# Create interface
with gr.Blocks(title="UE Chatbot") as app:
gr.Markdown("# UE 24 Hour Service")
with gr.Row():
chatbot = gr.Chatbot(height=500, label="Chat History",
avatar_images=(None, (None, "https://huggingface.co/spaces/groq/Groq-LLM/resolve/main/groq_logo.png")),
bubble_full_width=False)
with gr.Row():
query = gr.Textbox(label="Your question",
placeholder="Ask your question...",
scale=4)
submit_btn = gr.Button("Submit", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
# Status indicator
status = gr.Textbox(label="System Status",
value="Initializing...",
interactive=False)
# Update status periodically
def update_status():
if rag_system.loading_error:
return f"Error: {rag_system.loading_error}"
return "Ready" if rag_system.dataset_loaded else "Loading dataset..."
app.load(update_status, None, status, every=1)
# Event handlers
def respond(message, chat_history):
try:
response = rag_system.generate_response(message)
chat_history.append((message, response))
return "", chat_history
except Exception as e:
chat_history.append((message, f"Error: {str(e)}"))
return "", chat_history
def clear_chat():
return []
submit_btn.click(respond, [query, chatbot], [query, chatbot])
query.submit(respond, [query, chatbot], [query, chatbot])
clear_btn.click(clear_chat, outputs=chatbot)
if __name__ == "__main__":
app.launch(share=True) |