Spaces:
Runtime error
Runtime error
File size: 9,352 Bytes
a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 21085cc a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 929c20c 3bcb760 929c20c a90cc5e 3bcb760 903793a 3bcb760 903793a 3bcb760 929c20c 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 ceab301 2c78421 257f308 3bcb760 257f308 3bcb760 257f308 ceab301 3bcb760 257f308 ceab301 257f308 3bcb760 1486d83 d11da87 1486d83 ee16454 1486d83 ee16454 1486d83 ee16454 3bcb760 d11da87 3bcb760 d11da87 3bcb760 a90cc5e e2763db 1486d83 dd886b7 510b9e9 1486d83 7b1b238 1486d83 e2763db dff83a6 e2763db 1486d83 235021a e2763db c3faeca 7b1b238 1486d83 c3faeca e2763db a90cc5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import cv2
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splin
from numba import jit
import gradio as gr
@jit(nopython=True)
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(16 * nnz, dtype=np.float64)
A_rows = np.zeros(16 * nnz, dtype=np.int32)
A_cols = np.zeros(16 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
offsets = np.array([(0, 1), (0, -1), (1, 0), (-1, 0)])
idx = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for i in range(4):
dy, dx = offsets[i]
n_y, n_x = y + dy, x + dx
e = 4 * n + i
if 0 <= n_y < img_s_h and 0 <= n_x < img_s_w:
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = img_s[y, x] - img_s[n_y, n_x]
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
return A_data[:idx], A_rows[:idx], A_cols[:idx], b
def poisson_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(4*nnz, nnz))
v = splin.lsqr(A, b)[0]
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
@jit(nopython=True)
def neighbours(i: int, j: int, max_i: int, max_j: int):
pairs = []
for n in (-1, 1):
if 0 <= i+n <= max_i:
pairs.append((i+n, j))
if 0 <= j+n <= max_j:
pairs.append((i, j+n))
return pairs
@jit(nopython=True)
def build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(8 * nnz, dtype=np.float64)
A_rows = np.zeros(8 * nnz, dtype=np.int32)
A_cols = np.zeros(8 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
idx = 0
e = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1):
ds = img_s[y, x] - img_s[n_y, n_x]
dt = img_t[y, x] - img_t[n_y, n_x]
d = ds if abs(ds) > abs(dt) else dt
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = d
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
e += 1
return A_data[:idx], A_rows[:idx], A_cols[:idx], b[:e]
def mixed_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(len(b), nnz))
v = splin.spsolve(A.T @ A, A.T @ b)
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
def _2d_gaussian(sigma: float) -> np.ndarray:
ksize = np.int64(np.ceil(sigma)*6+1)
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
return gaussian_1d * np.transpose(gaussian_1d)
def _low_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
def _high_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return img - _low_pass_filter(img, sigma)
def _gaus_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
_im = _low_pass_filter(_im.copy(), sigma)
pyramid.append(_im)
_im = cv2.pyrDown(_im)
return pyramid
def _lap_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
lap = _high_pass_filter(_im.copy(), sigma)
pyramid.append(lap)
_im = cv2.pyrDown(_im)
return pyramid
def _blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray) -> np.ndarray:
return img1 * mask + img2 * (1.0 - mask)
def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth: int, sigma: int) -> np.ndarray:
# Ensure both images have the same number of channels (3 for RGB)
if len(img1.shape) == 2:
img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2RGB)
if len(img2.shape) == 2:
img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
# Ensure mask has 3 channels
if len(mask.shape) == 2:
mask = np.stack((mask,) * 3, axis=-1)
# Resize all images to the same size (use the size of img1)
h, w = img1.shape[:2]
img2 = cv2.resize(img2, (w, h))
mask = cv2.resize(mask, (w, h))
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)
blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1]
blended_img = _blend(img1, img2, mask)
for d in range(depth-1):
gaussian_img = _low_pass_filter(blended_img, sigma)
gaussian_img = cv2.resize(gaussian_img, blended[d].shape[:2])
# Ensure both images have 3 channels
if len(blended[d].shape) == 2:
blended[d] = cv2.cvtColor(blended[d], cv2.COLOR_GRAY2RGB)
if len(gaussian_img.shape) == 2:
gaussian_img = cv2.cvtColor(gaussian_img, cv2.COLOR_GRAY2RGB)
reconstructed_img = cv2.add(blended[d], gaussian_img)
blended_img = cv2.pyrUp(reconstructed_img)
blended_img = cv2.resize(blended_img, (w, h))
return np.clip(blended_img, 0, 1)
def get_image(img_path: str, mask: bool=False, scale: bool=True) -> np.array:
"""
Gets image in appropriate format
"""
if isinstance(img_path, np.ndarray):
img = img_path
else:
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for file inputs
if mask:
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_, binary_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
return np.where(binary_mask == 255, 1, 0)
if scale:
return img.astype('double') / 255.0
return img
def blend_images(bg_img, obj_img, mask_img, method):
bg_img = get_image(bg_img)
obj_img = get_image(obj_img)
mask_img = get_image(mask_img, mask=True)
if method == "Poisson":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = poisson_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Mixed Gradient":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = mixed_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Laplacian":
mask_stack = np.stack((mask_img.astype(float),) * 3, axis=-1)
blend_img = laplacian_blend(obj_img, bg_img, mask_stack, 5, 25.0)
return (blend_img * 255).astype(np.uint8)
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
with gr.Row():
with gr.Column():
bg_img = gr.Image(label="Background Image", type="numpy", height=300)
with gr.Column():
obj_img = gr.Image(label="Object Image", type="numpy", height=300)
with gr.Column():
mask_img = gr.Image(label="Mask Image", type="numpy", height=300)
with gr.Row():
with gr.Column():
method = gr.Radio(["Laplacian", "Mixed Gradient"], label="Blending Method", value="Laplacian")
with gr.Column():
blend_button = gr.Button("Blend Images")
output_image = gr.Image(label="Blended Image")
blend_button.click(
blend_images,
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image
)
gr.Examples(
examples=[
["img1.jpg", "img2.jpg", "mask1.jpg", "Mixed Gradient"],
["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
],
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image,
fn=blend_images,
cache_examples=True,
)
iface.launch() |