Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from briarmbg import BriaRMBG | |
import PIL | |
from PIL import Image | |
from typing import Tuple | |
import cv2 | |
# Load the model | |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net.to(device) | |
net.eval() | |
def resize_image(image): | |
image = image.convert('RGB') | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def process_image(image): | |
# prepare input | |
orig_image = Image.fromarray(image) | |
w, h = orig_im_size = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
# inference | |
result = net(im_tensor) | |
# post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
# image to pil | |
result_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_mask = Image.fromarray(np.squeeze(result_array)) | |
# add the mask on the original image as alpha channel | |
new_im = orig_image.copy() | |
new_im.putalpha(pil_mask) | |
return new_im | |
def process_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise ValueError("Error opening video file") | |
# Get video properties | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height), isColor=True) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Convert frame to PIL Image | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(frame) | |
# Process the frame | |
processed_image = process_image(frame) | |
# Convert back to OpenCV format | |
processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGBA2BGRA) | |
# Write the frame to the output video | |
out.write(processed_frame) | |
cap.release() | |
out.release() | |
return 'output.mp4' | |
def process_input(input_data): | |
if isinstance(input_data, str): # Assuming video path is provided as a string | |
return process_video(input_data) | |
else: # Assuming image is provided as numpy array | |
return process_image(input_data) | |
gr.Markdown("## BRIA RMBG 1.4") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for BRIA RMBG 1.4 that using | |
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. | |
</p> | |
''') | |
title = "Background Removal" | |
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> | |
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>. To purchase a commercial license, simply click <a href='https://go.bria.ai/3ZCBTLH' target='_blank'><b>Here</b></a>. <br> | |
""" | |
examples = [['./input.jpg'],] | |
demo = gr.Interface(fn=process_input, inputs="file", outputs="playable_video", examples=examples, title=title, description=description) | |
if __name__ == "__main__": | |
demo.launch(share=False) |