Spaces:
Runtime error
Runtime error
File size: 25,508 Bytes
35fa5e5 56cad86 35fa5e5 56cad86 35fa5e5 936e064 35fa5e5 c596ec3 35fa5e5 56cad86 35fa5e5 56cad86 35fa5e5 56cad86 dd8fcb1 e021580 c6af1a7 e021580 dd8fcb1 e021580 dd8fcb1 e021580 35fa5e5 e021580 35fa5e5 e021580 dd8fcb1 e021580 35fa5e5 e021580 dd8fcb1 35fa5e5 dd8fcb1 c596ec3 35fa5e5 dd8fcb1 35fa5e5 c596ec3 35fa5e5 dd8fcb1 936e064 35fa5e5 936e064 35fa5e5 936e064 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 936e064 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 936e064 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 dd8fcb1 936e064 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c6af1a7 35fa5e5 dd8fcb1 35fa5e5 c6af1a7 c596ec3 35fa5e5 c596ec3 35fa5e5 c6af1a7 35fa5e5 dd8fcb1 35fa5e5 56cad86 35fa5e5 c596ec3 dd8fcb1 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 56cad86 35fa5e5 c596ec3 35fa5e5 dd8fcb1 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c6af1a7 35fa5e5 c596ec3 dd8fcb1 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 87c94b8 35fa5e5 c596ec3 35fa5e5 c596ec3 35fa5e5 c596ec3 c6af1a7 c596ec3 56cad86 dd8fcb1 56cad86 c6af1a7 56cad86 c6af1a7 56cad86 c6af1a7 56cad86 936e064 56cad86 936e064 56cad86 c6af1a7 56cad86 936e064 56cad86 936e064 56cad86 dd8fcb1 56cad86 936e064 56cad86 c596ec3 56cad86 c6af1a7 56cad86 affaa64 56cad86 affaa64 56cad86 dd8fcb1 56cad86 936e064 56cad86 dd8fcb1 936e064 56cad86 936e064 b822fbe 56cad86 dd8fcb1 c596ec3 56cad86 dd8fcb1 56cad86 936e064 56cad86 936e064 56cad86 936e064 56cad86 dd8fcb1 b822fbe dd8fcb1 b822fbe 56cad86 dd8fcb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
# launch app
# streamlit run "survey_analytics_streamlit.py"
# imports
import streamlit as st
import pandas as pd
import os
import seaborn as sns
import plotly.express as px
import pickle
# factor analysis
from factor_analyzer import FactorAnalyzer
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer.factor_analyzer import calculate_kmo
from scipy.stats import zscore
# nlp
from bertopic import BERTopic
from transformers import pipeline
# custom
import survey_analytics_library as LIB
st.set_page_config(
page_title='Survey Analytics',
layout='centered',
)
# define data file path
data_path = 'data' + os.sep
# define model file path
model_path = 'models' + os.sep
# load and cache all data and models to improve app performance
@st.cache
def read_survey_data():
data_survey = pd.read_csv(data_path+'bfi_sample_answers.csv')
data_questions = pd.read_csv(data_path+'bfi_sample_questions.csv')
return data_survey, data_questions
data_survey, data_questions = read_survey_data()
@st.cache
def read_tokyo_data():
tokyo = pd.read_csv(data_path+'tokyo_olympics_tweets.csv')
return tokyo
tokyo = read_tokyo_data()
@st.cache(allow_output_mutation=True)
def load_bertopic_model():
topic_model = BERTopic.load(model_path+'bertopic_model_tokyo_olympics_tweets')
return topic_model
topic_model = load_bertopic_model()
@st.cache
def read_topic_results():
topic_results = pd.read_csv(data_path+'topic_results.csv')
return topic_results
topic_results = read_topic_results()
@st.cache
def read_climate_change_results():
sentiment_results = pd.read_csv(data_path+'sentiment_results.csv')
zero_shot_results = pd.read_csv(data_path+'zero_shot_results.csv')
return sentiment_results, zero_shot_results
sentiment_results, zero_shot_results = read_climate_change_results()
# intro to app
st.title('Survey Analytic Techniques')
st.write('''
Organisations collect lots of data every day through surveys, to get feedback, understand user behaviour, track trends across time etc.
It can be resource intensive to craft a good survey and getting responders to fill in their answers, and we should make full use of the data obtained.
Processing and analysing the data is tedious and time-consuming but it doesn't have to be!
We can employ the help of machines to comb through the data and provide actionable insights.
''')
st.image('https://images.unsplash.com/photo-1496181133206-80ce9b88a853')
st.caption('Photo by [Kari Shea](https://unsplash.com/@karishea) on [Unsplash](https://unsplash.com).')
st.write('\n')
st.write('\n')
st.write('''
In this demonstration, we'll be covering
- Factor Analysis - Clustering responders based on their answers
- Topic Modelling - Uncovering topics from text responses
- Zero-shot Classification - Classifying text responses into user-defined labels
- Sentiment Analysis - Quantifying sentiment of responders' text responses
''')
st.write('\n')
st.write('\n')
st.markdown('''---''')
st.header('Clustering Survey Responders')
st.write('''
Having knowledge and understanding about different groups of responders can help us to customise our interactions with them.
E.g. Within Financial Institutions, we have banks, insurers, and payment services, and they have different structures and behaviours from one another.
We want to be able to cluster survey responders into various groups based on how their answers.
This can be achieved through **Factor Analysis**.
''')
st.write('\n')
st.write('\n')
# copy data
df_factor_analysis = data_survey.copy()
st.subheader('Sample Survey Data')
st.write('''
Here we have a sample survey dataset where responders answer questions about their personality traits on a scale from 1 (Very Inaccurate) to 6 (Very Accurate).
Factor Analysis gives us \'factors\' or clusters of responders which provide us insights into the different personalities of the responders.
''')
# split page into two columns
# display survey questions and answers as dataframes side by side
col1, col2 = st.columns(2)
with col1:
st.write('Survey Questions')
st.dataframe(data_questions)
with col2:
st.write('Survey Answers')
st.dataframe(df_factor_analysis)
st.write('\n')
st.write('\n')
st.subheader('Factor Analysis Suitability')
st.write('''
Before performing Factor Analysis on the data, we need to evaluate if it is suitable to do so.
We apply two statistical tests (Bartlett's and KMO test) to the data.
These two tests check if the variables in the data are correlated with each other.
If there isn't any correlation between the variables, then the data is unsuitable for factor analysis as there are no natural clusters.
''')
# interactive button to run statistical test to determine suitability for factor analysis
if st.button('Run Tests'):
# test if the data is an identity matrix
# an identify matrix is when the variables in the data are uncorrelated to other variables
# this means that the data is unsuitable for factor analysis as there are no natural clusters
bartlett_sphericity_stat, p_value = calculate_bartlett_sphericity(x=df_factor_analysis)
# test how predictable is a variable by variables in the data
# if variables are unpredictable or uncorrelated
# this means that the data is unsuitable for factor analysis as there are no natural clusters
kmo_per_variable, kmo_total = calculate_kmo(x=df_factor_analysis)
# print test results
st.write(f'''
The P Value from Bartlett\'s Test (suitability is less than 0.05): **{round(p_value, 2)}**
The Value from KMO Test (suitability is more than 0.60): **{round(kmo_total, 2)}**
''')
# set default status to 'Failed'
fa_stat_test = 'Failed'
# check if data passes both tests
if p_value < 0.05 and kmo_total >= 0.6:
fa_stat_test = 'Passed'
st.success(f'Our data has **{fa_stat_test}** the two statistical tests!')
st.write('\n')
st.write('\n')
# define factor analyser model
fa = FactorAnalyzer()
# fit data
fa.fit(X=df_factor_analysis)
# get eigenvalues
eigenvalues, _ = fa.get_eigenvalues()
# get number of eigenvalues more than or equal to 1
optimal_factors = len([value for value in eigenvalues if value >= 1])
# store eigenvalues and number of clusters into a df for plotly
scree_df = pd.DataFrame({'Eigenvalues':eigenvalues, 'Number of Factors':list(range(1, len(eigenvalues)+1))})
st.subheader('Number of Clusters?')
st.write(f'''
How many clusters or factors are appropriate for our data?
For Factor Analysis, we can determine the number of factors using the eigenvalues and a scree plot.
E.g. A factor with an eigenvalue of 5 means that we can represent 5 variables from the data with just 1 factor.
The Kaiser criterion suggests that we should include factors with an eigenvalue of at least 1, so the factors included should at least represent 1 variable.
''')
# plot scree plot
fig = px.line(
scree_df,
x='Number of Factors',
y='Eigenvalues',
markers=True,
title='Scree Plot for Kaiser Criterion',
template='simple_white',
width=800,
height=500,
)
fig.add_hline(y=1, line_width=3, line_color='darkgreen')
st.plotly_chart(fig, use_container_width=True)
st.write(f'''
Kaiser criterion is one of many guides to determine the number of factors, ultimately the decision on the number of factors to use is best decided by the user based on their use case.
''')
# interactive form for user to enter different number of factors for analysis
with st.form('num_factor_form'):
# define number input
user_num_factors = st.number_input('Enter desired number of factors:', min_value=1, max_value=10, value=6)
# set factors to user input
optimal_factors = user_num_factors
# submit button for form to rerun app when user is ready
submit = st.form_submit_button('Run Factor Analysis')
st.write('\n')
st.write('\n')
# define factor analyser model
fa = FactorAnalyzer(n_factors=optimal_factors, rotation='varimax')
# fit data
fa.fit(df_factor_analysis)
# generate factor loadings
loads_df = pd.DataFrame(fa.loadings_, index=df_factor_analysis.columns)
# fit and transform data
responder_factors = fa.fit_transform(df_factor_analysis)
# store results as df
responder_factors = pd.DataFrame(responder_factors)
# rename columns to 'factor_n'
responder_factors.columns = ['factor_'+str(col) for col in list(responder_factors)]
# use the max loading across all factors to determine a responder's cluster
responder_factors['cluster'] = responder_factors.apply(lambda s: s.argmax(), axis=1)
# define list of factor columns
list_of_factor_cols = [col for col in responder_factors.columns if 'factor_' in col]
st.subheader('Factor Analysis Results')
st.write('''
Factor analysis gives us a loading for every factor for each responder.
We assign each responder to a factor or cluster based on their maximum loading across all the factors.
''')
# highlight factor with max loadings
st.dataframe(responder_factors.style.highlight_max(axis=1, subset=list_of_factor_cols, props='color:white; background-color:green;').format(precision=2))
st.write('\n')
# count number of responders in each cluster
fa_clusters = df_factor_analysis.copy().reset_index(drop=True)
fa_clusters['cluster'] = responder_factors['cluster']
cluster_counts = fa_clusters['cluster'].value_counts().reset_index()
cluster_counts = cluster_counts.rename(columns={'index':'Cluster', 'cluster':'Count'})
# calculate z-scores for each cluster
fa_z_scores = df_factor_analysis.copy().reset_index(drop=True)
fa_z_scores = fa_z_scores.apply(zscore)
fa_z_scores['cluster'] = responder_factors['cluster']
fa_z_scores = fa_z_scores.groupby('cluster').mean().reset_index()
fa_z_scores = fa_z_scores.apply(lambda x: round(x, 2))
st.write('''
Aggregating the scores of the clusters gives us detailed insights into the personality traits of the responders.
The scores here have been normalised to Z-scores, which is a measure of how many standard deviations (SD) is the score away from the mean.
E.g. A Z-score of 0 indicates the score is identical to the mean, while a Z-score of 1 indicates the score is 1 SD away from the mean.
''')
# define colour map for highlighting cells
cm = sns.light_palette('green', as_cmap=True)
# define list of question columns
list_of_question_cols = list(fa_z_scores.iloc[:,1:])
# display z-scores of clusters with conditional formatting
st.dataframe(fa_z_scores.style.background_gradient(cmap=cm, subset=list_of_question_cols).format(precision=2))
st.write('\n')
st.write('''
Lastly, we can visualise the distribution of responders in each cluster.
''')
# plot percentage of responders in each cluster
fig = px.pie(
cluster_counts,
values='Count',
names='Cluster',
hole=0.35,
title='Percentage of Responders in Each Cluster',
template='simple_white',
width=1000,
height=600,
)
st.plotly_chart(fig, use_container_width=True)
st.markdown('''---''')
st.write('\n')
st.write('\n')
st.header('Uncovering Topics from Text Responses')
st.write('''
With feedback forms or open-ended survey questions, we want to know what are the responders generally talking about.
One way would be to manually read all the collected responses to get a sense of the topics within, however, this is very manual and subjective.
Using **Topic Modelling**, we can programmatically extract common topics with the help of machine learning.
''')
st.write('\n')
st.subheader('Sample Tweets - Tokyo Olympics')
st.write(f'''
Here we have {len(tokyo):,} tweets from the Tokyo Olympics, going through them manually and coming up with topics would not be practical.
''')
# rename column
tokyo = tokyo.rename(columns={'text':'Tweet'})
# display raw tweets
st.dataframe(tokyo)
st.write('\n')
st.write('\n')
st.subheader('Visualising Topics')
st.write('''
Let's generate some topics without performing any cleaning to the data.
''')
# load and plot topics using unclean data
with open('data/topics_tokyo_unclean.pickle', 'rb') as pkl:
fig = pickle.load(pkl)
st.plotly_chart(fig, use_container_width=True)
st.write('''
From the chart above, we can see that 'Topic 0' and 'Topic 5' have some words that are not as meaningful.
For 'Topic 0', we already know that the tweets are about the Tokyo 2020 Olympics, having a topic for that isn't helpful.
'Tokyo', '2020', 'Olympics', etc., we refer to these as *stopwords*, and let's remove them and regenerate the topics.
''')
st.write('\n')
# define manually created topic labels
labelled_topics = [
'Barbra Banda (Zambian Footballer)',
'Indian Pride',
'Sutirtha Mukherjee (Indian Table Tennis Player)',
'Mirabai Chanu (Indian Weightlifter)',
'Road Race',
'Japan Volleyball',
'Sam Kerr (Australian Footballer)',
'Vikas Krishan (Indian Boxer)',
]
# load plot topics using clean data with stopwords removed
with open('data/topics_tokyo.pickle', 'rb') as pkl:
fig = pickle.load(pkl)
st.plotly_chart(fig, use_container_width=True)
st.write('''
Now we can see that the topics have improved.
We can use the top words in each topic to come up with a meaningful name, this has to be done manually and is subjective.
''')
st.write('\n')
st.write('\n')
# store topic info as dataframe
topics_df = topic_model.get_topic_info()
st.write(f'''
Next, we can also review the total number of topics and how many tweets are in each topic, to give us a sense of importance or priority.
There are a total of **{len(topics_df)-1}** topics, and the larget topic contains **{topics_df['Count'][1]}** tweets.
{topics_df['Count'][0]} tweets have also been assigned as Topic -1 or outliers. These tweets are unique compared to the others and there aren't enough of them to form a topic.
If there are too many or too few topics, there is also the option to further tune the model to refine the results.
''')
# display topic info
st.dataframe(topics_df)
st.write('\n')
st.subheader('Inspecting Individual Topics')
st.write('''
One point to also note is that the machine is not only picking out keywords in a tweet to determine its topic.
The model has an understanding of the relationship between words, e.g. 'Andy Murray' is related to 'tennis'.
For example:
*'Cilic vs Menezes, after more than 3 hours and millions of unconverted match points, is one of the worst quality ten…'*
This tweet is in Topic 9 - Tennis without the word 'tennis' in it.
Here we can inspect the individual tweets within each topic.
''')
# define the first and last topic number
first_topic = topics_df['Topic'].iloc[0]
last_topic = topics_df['Topic'].iloc[-1]
# interative form for user to select a topic and inspect its top words and tweets
with st.form('inspect_tweets'):
inspect_topic = st.number_input(f'Enter Topic (from {first_topic} to {last_topic}) to Inspect:', min_value=first_topic, max_value=last_topic, value=9)
submit = st.form_submit_button('Inspect Topic')
# get top five words from list of tuples
inspect_topic_words = [i[0] for i in topic_model.get_topic(inspect_topic)[:5]]
st.write(f'''
The top five words for Topic {inspect_topic} are: {inspect_topic_words}
''')
# display tweets from selected topic
st.dataframe(topic_results.loc[(topic_results['Topic'] == inspect_topic)])
st.markdown('''---''')
st.write('\n')
st.header('Classifiying Text Responses and Sentiment Analysis')
st.write(f'''
With survey responses, sometimes as a business user, we already have a general idea of what responders are talking about and we want to categorise or classify the responses accordingly.
As an example, within the topic of 'Climate Change', we are interested in finance, politics, technology, and wildlife.
Using **Zero-shot Classification**, we can classify responses into one of these four categories.
As an added bonus, we can also find out how responders feel about the categories using **Sentiment Analysis**.
''')
st.write('\n')
st.subheader('Sample Tweets - Climate Change')
st.write(f'''
We'll use a different set of {len(sentiment_results):,} tweets related to climate change.
''')
# rename column
sentiment_results = sentiment_results.rename(columns={'sequence':'Tweet'})
st.dataframe(sentiment_results[['Tweet']])
st.write('\n')
@st.cache(allow_output_mutation=True)
def load_transfomer_pipelines():
classifier_zero_shot = pipeline(
task='zero-shot-classification',
model='valhalla/distilbart-mnli-12-1',
return_all_scores=True
)
classifier_sentiment = pipeline(
task='sentiment-analysis',
model = 'distilbert-base-uncased-finetuned-sst-2-english',
return_all_scores=True
)
return classifier_zero_shot, classifier_sentiment
classifier_zero_shot, classifier_sentiment = load_transfomer_pipelines()
# define candidate labels
candidate_labels = [
'finance',
'politics',
'technology',
'wildlife',
]
# define sample tweet
sample_tweet_index = 5000
# define the first and last topic number
# create range of index
tweet_index = sentiment_results.index
first_tweet = tweet_index[0]
last_tweet = tweet_index[-1]
st.subheader('Classifying Text')
st.write(f'''
As a demonstration, we'll define some categories and pick a tweet to classify and determine its sentiment.
Feel free to add your own categories or even input your own text!
''')
# interactive input for user to define candidate labels and tweet index for analysis
with st.form('classify_tweets'):
# input for labels
user_defined_labels = st.text_input('Enter categories (separate categories by comma):', ', '.join(candidate_labels))
candidate_labels = user_defined_labels
# input for tweet index
user_define_tweet = st.number_input(f'Enter tweet index (from {first_tweet} to {last_tweet}) to classify:', min_value=first_tweet, max_value=last_tweet, value=sample_tweet_index)
sample_tweet_index = user_define_tweet
sample_tweet = sentiment_results['Tweet'].iloc[sample_tweet_index]
# input for user defined text
user_defined_input = st.text_input('Enter custom text (optional, leave blank to use tweets):', '')
# check if user has entered any custom text
# if user_define_input is not blank, then override sample_tweet
if user_defined_input:
sample_tweet = user_defined_input
# submit form
submit = st.form_submit_button('Classify Text')
st.write('\n')
st.write(f'''
Here are the results:
''')
if user_defined_input:
st.write(f'Custom Text: *\'{sample_tweet}\'*')
else:
st.write(f'Selected Tweet: *\'{sample_tweet}\'*')
# get predictions from models
zero_shot_sample = classifier_zero_shot(sample_tweet, candidate_labels)
sentiment_sample = classifier_sentiment(sample_tweet)
# get sentiment
sentiment_sample = sentiment_sample[1].get('score')
sentiment_label = 'positive'
if sentiment_sample < 0.5:
sentiment_label = 'negative'
emoji = {
'positive':'😀',
'negative':'☹️',
}
st.write(f'''
The main category is: **{zero_shot_sample['labels'][0]}** with a score of {round(zero_shot_sample['scores'][0], 2)}
Main category score ranges from 0 to 1, with 1 being very likely.
The full set of scores are: {dict(zip(zero_shot_sample['labels'], [round(score, 2) for score in zero_shot_sample['scores']]))}
Full set of scores adds up to 1.
The sentiment is: {emoji[sentiment_label]} **{sentiment_label}** with a score of {round(sentiment_sample, 2)}
Sentiment score ranges from 0 to 1, with 1 being very positive.
''')
st.write('\n')
st.write('\n')
# drop unused columns and rename columns
zero_shot_results = zero_shot_results.drop('labels_scores', axis=1)
zero_shot_results = zero_shot_results.rename(columns={'sequence':'tweet', 'label':'category'})
st.subheader('Zero-Shot Classification and Sentiment Analysis Results')
st.write(f'''
Let's review some tweets and how they fall into the categories of finance, politics, technology, and wildlife.
''')
st.dataframe(zero_shot_results.iloc[:2000].style.format(precision=2))
st.write(f'''
We can observe that the model does not have strong confidence in predicting the categories for some of the tweets.
It is likely that the tweet does not naturally fall into one of the defined categories.
Before performing further analysis on our results, we can set a score threshold to only keep predictions that we're confident in.
''')
st.write('\n')
# interactive input for user to define candidate labels and tweet index for analysis
with st.form('classification_score_threshold'):
user_defined_threshold = st.number_input('Enter score threshold (between 0 and 1):', min_value=0.0, max_value=1.0, value=0.7, step=0.05)
# submit form
submit = st.form_submit_button('Set Threshold')
st.write('\n')
# filter and keep results with score above defined threshold
zero_shot_results_clean = zero_shot_results.loc[(zero_shot_results['score'] >= user_defined_threshold)].copy()
# rename columns
sentiment_results.columns = ['tweet', 'sentiment']
st.write(f'''
The predictions get better with a higher threshold but reduces the final number of tweets available for further analysis.
Out of the {len(sentiment_results):,} tweets, we are now left with {len(zero_shot_results_clean)}.
We also add on the sentiment score for the tweets, the score here ranges from 0 (most negative) to 1 (most positive).
''')
# merge in sentiment score on index
# drop unused columns
classification_sentiment_df = pd.merge(zero_shot_results_clean, sentiment_results[['sentiment']], how='left', left_index=True, right_index=True)
classification_sentiment_df = classification_sentiment_df[['tweet', 'category', 'score', 'sentiment']]
st.dataframe(classification_sentiment_df.style.format(precision=2))
st.write(f'''
The difficult part of zero-shot classification is defining the right set of categories for each business case.
Some trial and error are required to find the appropriate words that can return the optimal results.
E.g. Do we want to differentiate between 'plants' and 'animals', or is 'wildlife' better as an overall category?
''')
st.write(f'''
With sentiment analysis, the model typically has pitfalls such as not being able to detect sarcasm well.
However, sarcastic responses are typically outliers in survey data and the data points would be smoothed out when we look at average the sentiment scores.
''')
st.write('\n')
# group by category, count tweets and get mean of sentiment
classification_sentiment_agg = classification_sentiment_df.groupby(['category']).agg({'tweet':'count', 'sentiment':'mean'}).reset_index()
classification_sentiment_agg = classification_sentiment_agg.rename(columns={'tweet':'count'})
st.write(f'''
Finally, we can visualise the percentage of tweets in each category and the respective average sentiment scores.
''')
fig = px.pie(
classification_sentiment_agg,
values='count',
names='category',
hole=0.35,
title='Percentage of Tweets in Each Category',
template='simple_white',
width=1000,
height=600
)
fig.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig, use_container_width=True)
fig = px.bar(
classification_sentiment_agg,
x='category',
y='sentiment',
title='Average Sentiment of Tweets in Each Category',
template='simple_white',
width=1000,
height=600
)
fig.update_yaxes(range=[0, 1])
fig.add_hline(y=0.5, line_width=3, line_color='darkgreen')
st.plotly_chart(fig, use_container_width=True)
st.write('''
To improve the performance of the models, further fine tuning can be done.
We would also need labelled data to test against which is usually not readily available and can be difficult and expensive to obtain.
If you're just thinking of exploring the feasibility of applying text analysis on your dataset, the pre-trained models used in this app will be perfect!
We've leveraged state-of-the-art deep learning models to jumpstart our analytics capabilities.
The base models used for sentiment analysis and zero-shot classification and are called BERT (developed by Google) and BART (developed by Facebook) respectively.
These language models require large amounts of data and resources to be trained.
BERT by Google was trained on the whole Wikipedia (about 2.5 billion words) and 11 thousand books, while BART was trained the same plus 63 million news articles and other text scraped from the internet.
An example of a fine-tuned model is FinBERT, which builds on top of BERT and is further trained on financial news to analyse the sentiment of finance-related text.
''')
st.markdown('''---''')
st.write('\n')
st.write('\n')
st.write('''
That's the end of this demo 😎, the source code can be found on [Github](https://github.com/Greco1899/survey_analytics).
''')
st.write('\n')
st.image('https://images.unsplash.com/photo-1620712943543-bcc4688e7485')
st.caption('Photo by [Andrea De Santis](https://unsplash.com/@santesson89) on [Unsplash](https://unsplash.com).')
|