|
Pre-trained checkpoints can be found on the [NGC Catalog](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/eg3d). |
|
|
|
Brief descriptions of models and the commands used to train them are found below. |
|
|
|
--- |
|
|
|
# FFHQ |
|
|
|
**ffhq512-64.pkl** |
|
|
|
FFHQ 512, trained with neural rendering resolution of 64x64. |
|
|
|
```.bash |
|
# Train with FFHQ from scratch with raw neural rendering resolution=64, using 8 GPUs. |
|
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \ |
|
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True |
|
``` |
|
|
|
**ffhq512-128.pkl** |
|
|
|
Fine-tune FFHQ 512, with neural rendering resolution of 128x128. |
|
|
|
```.bash |
|
# Second stage finetuning of FFHQ to 128 neural rendering resolution. |
|
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \ |
|
--resume=ffhq-64.pkl \ |
|
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --neural_rendering_resolution_final=128 --kimg=2000 |
|
``` |
|
|
|
## FFHQ Rebalanced |
|
|
|
Same as the models above, but fine-tuned using a rebalanced version of FFHQ that has a more uniform pose distribution. Compared to models trained on standard FFHQ, these models should produce better 3D shapes and better renderings from steep angles. |
|
|
|
**ffhqrebalanced512-64.pkl** |
|
|
|
```.bash |
|
# Finetune with rebalanced FFHQ at rendering resolution 64. |
|
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \ |
|
--resume=ffhq-64.pkl \ |
|
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8 |
|
``` |
|
|
|
**ffhqrebalanced512-128.pkl** |
|
```.bash |
|
# Finetune with rebalanced FFHQ at 128 neural rendering resolution. |
|
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \ |
|
--resume=ffhq-rebalanced-64.pkl \ |
|
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128 |
|
``` |
|
|
|
# AFHQ Cats |
|
|
|
**afhqcats512-128.pkl** |
|
|
|
```.bash |
|
# Train with AFHQ, finetuning from FFHQ with ADA, using 8 GPUs. |
|
python train.py --outdir=~/training-runs --cfg=afhq --data=~/datasets/afhq.zip \ |
|
--resume=ffhq-64.pkl \ |
|
--gpus=8 --batch=32 --gamma=5 --aug=ada --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128 |
|
``` |
|
|
|
|
|
# Shapenet |
|
|
|
**shapenetcars128-64.pkl** |
|
|
|
```.bash |
|
# Train with Shapenet from scratch, using 8 GPUs. |
|
python train.py --outdir=~/training-runs --cfg=shapenet --data=~/datasets/cars_train.zip \ |
|
--gpus=8 --batch=32 --gamma=0.3 |
|
``` |