Spaces:
Runtime error
Runtime error
File size: 16,008 Bytes
61e4fc2 bfa0967 787f4ea 3d05be5 787f4ea 61e4fc2 2914aec a8dd096 ebcc2b0 61e4fc2 bfa0967 61e4fc2 bfa0967 61e4fc2 787f4ea 61e4fc2 ebcc2b0 bfa0967 61e4fc2 bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 ebcc2b0 bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 787f4ea a8dd096 787f4ea bfa0967 787f4ea a8dd096 787f4ea bfa0967 787f4ea bfa0967 ebcc2b0 bfa0967 787f4ea a8dd096 787f4ea a8dd096 787f4ea a8dd096 bfa0967 787f4ea 61e4fc2 bfa0967 61e4fc2 787f4ea a8dd096 787f4ea bfa0967 787f4ea bfa0967 787f4ea bfa0967 61e4fc2 a8dd096 bfa0967 61e4fc2 bfa0967 61e4fc2 3d05be5 61e4fc2 bfa0967 61e4fc2 a8dd096 2914aec bfa0967 a8dd096 3d05be5 a8dd096 787f4ea 61e4fc2 787f4ea 61e4fc2 3d05be5 61e4fc2 3d05be5 61e4fc2 787f4ea 3d05be5 787f4ea 3d05be5 bfa0967 e7cdd9d a8dd096 61e4fc2 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 61e4fc2 bfa0967 3d05be5 fe52f62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import pandas as pd # stress hydrique and rendement, besoin en eau
import plotly.graph_objects as go
from typing import List
import plotly.express as px
from data_pipelines.historical_weather_data import (
download_historical_weather_data,
aggregate_hourly_weather_data,
)
import os
from forecast import get_forecast_data
from compute_et0_adjusted import compute_et0
import copy
def water_deficit(df, latitude, longitude, shading_coef=0, historic=True):
preprocessed_data = df.copy()
preprocessed_data["irradiance"] = preprocessed_data[
"Surface Downwelling Shortwave Radiation (W/m²)"
] * (1 - shading_coef)
preprocessed_data["air_temperature_min"] = preprocessed_data[
"Daily Minimum Near Surface Air Temperature (°C)"
]
preprocessed_data["air_temperature_max"] = preprocessed_data[
"Daily Maximum Near Surface Air Temperature (°C)"
]
if historic == True:
preprocessed_data["relative_humidity_min"] = preprocessed_data[
"Relative Humidity_min"
]
preprocessed_data["relative_humidity_max"] = preprocessed_data[
"Relative Humidity_max"
]
else:
preprocessed_data["relative_humidity_min"] = preprocessed_data[
"Relative Humidity (%)"
]
preprocessed_data["relative_humidity_max"] = preprocessed_data[
"Relative Humidity (%)"
]
preprocessed_data["wind_speed"] = preprocessed_data["Near Surface Wind Speed (m/s)"]
preprocessed_data["time"] = pd.to_datetime(
preprocessed_data["time"], errors="coerce"
)
preprocessed_data["month"] = preprocessed_data["time"].dt.month
preprocessed_data["day_of_year"] = preprocessed_data["time"].dt.dayofyear
et0 = compute_et0(preprocessed_data, latitude, longitude)
preprocessed_data["Evaporation (mm/day)"] = et0
preprocessed_data["Evaporation (mm/day)"] = preprocessed_data[
"Evaporation (mm/day)"
].clip(lower=0)
preprocessed_data["Precipitation (mm/day)"] = (
86400 * preprocessed_data["Precipitation (kg m-2 s-1)"]
)
preprocessed_data["Water Deficit (mm/day)"] = (
preprocessed_data["Evaporation (mm/day)"]
- preprocessed_data["Precipitation (mm/day)"]
)
return preprocessed_data
def concatenate_historic_forecast(
historic, forecast, cols_to_keep, value_period_col="forecast scénario modéré", don_t = False
):
if don_t:
historic["period"] = value_period_col
forecast["period"] = value_period_col
historic = historic[cols_to_keep]
forecast = forecast[cols_to_keep]
full_data = pd.concat([historic, forecast])
full_data = full_data[full_data['year']>=2025]
return full_data
historic["period"] = "historique"
forecast["period"] = value_period_col
historic = historic[cols_to_keep]
forecast = forecast[cols_to_keep]
full_data = pd.concat([historic, forecast])
return full_data
def visualize_climate(
moderate: pd.DataFrame,
historic: pd.DataFrame,
pessimist: pd.DataFrame,
x_axis="year",
column: str = "Precipitation (mm)",
cols_to_keep: List[str] = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
"Water Deficit (mm/day)",
"year",
"period",
],
):
if column == "Water Deficit (mm/day)":
concatenated_moderate = concatenate_historic_forecast(
historic, moderate, cols_to_keep,don_t=True
)
else:
concatenated_moderate = concatenate_historic_forecast(
historic, moderate, cols_to_keep
)
concatenated_moderate = concatenated_moderate.sort_values(by=x_axis) # Ensure order
fig = go.Figure()
if column == "Precipitation (mm)":
for condition_value in concatenated_moderate["period"].unique():
segment = concatenated_moderate[
concatenated_moderate["period"] == condition_value
]
avg_precipitation = segment.groupby(x_axis)[column].mean().reset_index()
fig.add_trace(
go.Bar(
x=avg_precipitation[x_axis],
y=avg_precipitation[column],
name=f"{condition_value}",
marker=dict(
color="blue" if condition_value == "historique" else "purple"
),
)
)
if column == "Water Deficit (mm/day)":
concatenated_pessimist = concatenate_historic_forecast(
historic, pessimist, cols_to_keep, "forecast scénario pessimiste",don_t=True
)
else:
concatenated_pessimist = concatenate_historic_forecast(
historic, pessimist, cols_to_keep, "forecast scénario pessimiste"
)
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
concatenated_pessimist = concatenated_pessimist[
concatenated_pessimist["period"] != "historique"
]
for condition_value in concatenated_pessimist["period"].unique():
segment = concatenated_pessimist[
concatenated_pessimist["period"] == condition_value
]
avg_precipitation = segment.groupby(x_axis)[column].mean().reset_index()
fig.add_trace(
go.Bar(
x=avg_precipitation[x_axis],
y=avg_precipitation[column],
name=f"{condition_value}",
marker=dict(
color="orange" if condition_value != "historique" else "blue"
),
)
)
# Update layout for bar chart
fig.update_layout(
title=f"Moyenne de {column} par année",
xaxis_title="Année", # Set the x-axis title to Year
yaxis_title="Précipitation (mm)", # Set the y-axis title to Precipitation
barmode="group", # Group bars for different conditions
)
else:
for condition_value in concatenated_moderate["period"].unique():
segment = concatenated_moderate[
concatenated_moderate["period"] == condition_value
]
if condition_value == "historique":
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup="group1",
showlegend=False,
line=dict(
color=(
"blue" if condition_value == "historique" else "purple"
)
),
)
)
else:
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup="group2",
showlegend=False,
line=dict(
color=(
"blue" if condition_value == "historique" else "purple"
),
dash="dot",
),
)
)
# Continue with pessimistic data as in the original function...
if column == "Water Deficit (mm/day)":
concatenated_pessimist = concatenate_historic_forecast(
historic, pessimist, cols_to_keep, "forecast scénario pessimiste",don_t=True
)
else:
concatenated_pessimist = concatenate_historic_forecast(
historic, pessimist, cols_to_keep, "forecast scénario pessimiste"
)
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
for condition_value in concatenated_pessimist["period"].unique():
segment = concatenated_pessimist[
concatenated_pessimist["period"] == condition_value
]
if condition_value == "historique":
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup="group1",
line=dict(
color=(
"blue" if condition_value == "historique" else "orange"
),
dash="dot" if condition_value != "historique" else None,
),
)
)
else:
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup="group3",
line=dict(
color=(
"blue" if condition_value == "historique" else "orange"
),
dash="dot" if condition_value != "historique" else None,
),
)
)
# Interpolation for the pessimistic scenario...
interpolation_pessimist = concatenated_pessimist[
concatenated_pessimist[x_axis] > 2023
]
interpolation_pessimist = interpolation_pessimist[
interpolation_pessimist[x_axis] <= 2025
]
fig.add_trace(
go.Scatter(
x=interpolation_pessimist[x_axis],
y=interpolation_pessimist[column].interpolate(),
mode="lines",
name="forecast scénario pessimiste",
legendgroup="group3",
showlegend=False,
line=dict(color="orange", dash="dot"),
),
)
interpolation_moderate = concatenated_moderate[
concatenated_moderate[x_axis] > 2023
]
interpolation_moderate = interpolation_moderate[
interpolation_moderate[x_axis] <= 2025
]
fig.add_trace(
go.Scatter(
x=interpolation_moderate[x_axis],
y=interpolation_moderate[column].interpolate(),
mode="lines",
name="forecast scénario modéré",
legendgroup="group2",
line=dict(color="purple", dash="dot"),
),
)
fig.update_layout(
title=f"Historique et Forecast pour {column}",
xaxis_title="Year", # Set the x-axis title to Year
yaxis_title=column, # Set the y-axis title to Precipitation
)
return fig
def aggregate_yearly(df, col_to_agg, operation="mean"):
df[col_to_agg] = df.groupby("year")[col_to_agg].transform(operation)
return df
def generate_plots(
moderate: pd.DataFrame,
historic: pd.DataFrame,
pessimist: pd.DataFrame,
x_axes: List[str],
cols_to_plot: List[str],
is_shaded: str = "",
):
plots = []
for i, col in enumerate(cols_to_plot):
plots.append(visualize_climate(moderate, historic, pessimist, x_axes[i], col))
return plots
def get_plots():
cols_to_plot = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
"Water Deficit (mm/day)",
]
cols_to_keep: List[str] = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
"Water Deficit (mm/day)",
"year",
"period",
]
x_axes = ["year"] * len(cols_to_plot)
latitude = 47
longitude = 5
start_year = 2000
end_year = 2025
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
historic = aggregate_hourly_weather_data(df)
historic = historic.reset_index()
historic = historic.rename(
columns={
"precipitation": "Precipitation (mm)",
"air_temperature_mean": "Near Surface Air Temperature (°C)",
"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)",
"index": "time",
}
)
historic["time"] = pd.to_datetime(historic["time"])
historic = historic.sort_values("time")
historic = historic[historic["time"] < "2025-01-01"]
historic = historic.rename(
columns={
"air_temperature_min": "Daily Minimum Near Surface Air Temperature (°C)",
"air_temperature_max": "Daily Maximum Near Surface Air Temperature (°C)",
"relative_humidity_min": "Relative Humidity_min",
"relative_humidity_max": "Relative Humidity_max",
"wind_speed": "Near Surface Wind Speed (m/s)",
"Precipitation (mm)": "Precipitation (kg m-2 s-1)",
}
)
historic["Precipitation (kg m-2 s-1)"] = (
historic["Precipitation (kg m-2 s-1)"] / 3600
)
historic = water_deficit(historic, latitude, longitude)
historic = historic.rename(
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
)
historic["Precipitation (mm)"] = historic["Precipitation (mm)"] * 3600
moderate = get_forecast_data(latitude, longitude, "moderate")
pessimist = get_forecast_data(latitude, longitude, "pessimist")
moderate = moderate.rename(
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
)
moderate["time"] = pd.to_datetime(moderate["time"])
moderate = moderate.sort_values("time")
moderate["year"] = moderate["time"].dt.year
moderate["Precipitation (mm)"] = moderate["Precipitation (mm)"] * 31536000
pessimist = pessimist.rename(
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
)
pessimist["time"] = pd.to_datetime(pessimist["time"])
pessimist = pessimist.sort_values("time")
pessimist["year"] = pessimist["time"].dt.year
pessimist["Precipitation (mm)"] = pessimist["Precipitation (mm)"] * 31536000
pessimist["period"] = "forecast scénario pessimiste"
historic["year"] = historic["time"].dt.year
historic["Precipitation (mm)"] = historic["Precipitation (mm)"] * 8760.0
for col in cols_to_plot:
moderate = aggregate_yearly(moderate, col)
historic = aggregate_yearly(historic, col)
pessimist = aggregate_yearly(pessimist, col)
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
moderate = get_forecast_data(latitude, longitude, "moderate", shading_coef=0.2)
pessimist = get_forecast_data(latitude, longitude, "pessimist", shading_coef=0.2)
pessimist["year"] = pessimist["time"].dt.year
pessimist = pessimist[["year", "Water Deficit (mm/day)"]]
pessimist = aggregate_yearly(pessimist, 'Water Deficit (mm/day)')
plot_ombrage = copy.deepcopy(plots[-1])
plot_ombrage.add_trace(
go.Scatter(
x=pessimist["year"],
y=pessimist['Water Deficit (mm/day)'],
mode="lines",
name="forecast scénario pessimisste ombrage de 20%",
line=dict(
color="green",
dash="dot",
),
)
)
plots.append(plot_ombrage)
return plots
|