Spaces:
Sleeping
Sleeping
File size: 2,309 Bytes
472cb47 b5f9e6b 472cb47 b5f9e6b 472cb47 b5f9e6b 472cb47 b5f9e6b 472cb47 b5f9e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import faiss
import streamlit as st
from PyPDF2 import PdfReader
from sentence_transformers import SentenceTransformer
from groq import Groq
from dotenv import load_dotenv
import requests
from io import BytesIO
# Predefined Google Drive links
PDF_LINKS = [
"https://drive.google.com/uc?id=1JPf0XvDhn8QoDOlZDrxCOpu4WzKFESNz",
# Add more Google Drive links here
]
# Initialize Groq client
client = Groq(api_key="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")
# Load Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")
# Initialize FAISS
dimension = 384 # Embedding size for the Sentence Transformer model
index = faiss.IndexFlatL2(dimension)
# Store chunks globally
stored_chunks = []
# Function to download and extract the PDF content
def download_and_process_pdf(link):
response = requests.get(link)
if response.status_code == 200:
pdf_reader = PdfReader(BytesIO(response.content))
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
chunks = [text[i:i + 500] for i in range(0, len(text), 500)] # Chunk into 500-char blocks
embeddings = model.encode(chunks)
index.add(embeddings)
stored_chunks.extend(chunks)
else:
print(f"Failed to download PDF from link: {link}")
# Process all predefined links
for link in PDF_LINKS:
download_and_process_pdf(link)
# Function to query FAISS and generate a response
def query_model(query):
query_vector = model.encode([query])
_, indices = index.search(query_vector, k=3) # Top 3 similar chunks
response_chunks = [stored_chunks[idx] for idx in indices[0]]
context = " ".join(response_chunks)
# Groq API call
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Context: {context}\n\nQuery: {query}",
}
],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
# Streamlit app
st.title("RAG-based PDF Question Answering")
st.write("Preloaded documents from Google Drive are ready for querying.")
query = st.text_input("Ask a question:")
if query:
answer = query_model(query)
st.write("### Answer:")
st.write(answer)
|