hamzaherry's picture
Update app.py
b5f9e6b verified
import os
import faiss
import streamlit as st
from PyPDF2 import PdfReader
from sentence_transformers import SentenceTransformer
from groq import Groq
from dotenv import load_dotenv
import requests
from io import BytesIO
# Predefined Google Drive links
PDF_LINKS = [
"https://drive.google.com/uc?id=1JPf0XvDhn8QoDOlZDrxCOpu4WzKFESNz",
# Add more Google Drive links here
]
# Initialize Groq client
client = Groq(api_key="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")
# Load Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")
# Initialize FAISS
dimension = 384 # Embedding size for the Sentence Transformer model
index = faiss.IndexFlatL2(dimension)
# Store chunks globally
stored_chunks = []
# Function to download and extract the PDF content
def download_and_process_pdf(link):
response = requests.get(link)
if response.status_code == 200:
pdf_reader = PdfReader(BytesIO(response.content))
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
chunks = [text[i:i + 500] for i in range(0, len(text), 500)] # Chunk into 500-char blocks
embeddings = model.encode(chunks)
index.add(embeddings)
stored_chunks.extend(chunks)
else:
print(f"Failed to download PDF from link: {link}")
# Process all predefined links
for link in PDF_LINKS:
download_and_process_pdf(link)
# Function to query FAISS and generate a response
def query_model(query):
query_vector = model.encode([query])
_, indices = index.search(query_vector, k=3) # Top 3 similar chunks
response_chunks = [stored_chunks[idx] for idx in indices[0]]
context = " ".join(response_chunks)
# Groq API call
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Context: {context}\n\nQuery: {query}",
}
],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
# Streamlit app
st.title("RAG-based PDF Question Answering")
st.write("Preloaded documents from Google Drive are ready for querying.")
query = st.text_input("Ask a question:")
if query:
answer = query_model(query)
st.write("### Answer:")
st.write(answer)