File size: 4,609 Bytes
de4f9aa
69545c2
 
 
 
 
 
 
 
 
 
 
 
 
 
0225f43
69545c2
 
0225f43
69545c2
 
 
 
7849b8f
 
0225f43
 
 
 
 
 
 
 
 
 
 
7849b8f
 
0225f43
5f1292c
0225f43
5f1292c
 
0225f43
5f1292c
0225f43
 
 
7849b8f
c79b27e
0a9b429
 
0225f43
0a9b429
4e8a148
d211767
9b6b6b1
 
 
 
 
7849b8f
55b2656
9b6b6b1
0225f43
9b6b6b1
 
 
0225f43
 
 
 
9b6b6b1
4e8a148
d211767
9b6b6b1
0a9b429
 
 
 
 
 
0225f43
0a9b429
 
 
 
4e8a148
0a9b429
 
9b6b6b1
 
0a9b429
9b6b6b1
b0801de
9b6b6b1
4e8a148
 
0225f43
 
 
9b6b6b1
0225f43
 
 
4e5fb8f
0225f43
9b6b6b1
0225f43
 
 
 
9b6b6b1
0225f43
 
 
9b6b6b1
0225f43
 
 
 
 
 
 
974967f
55b2656
0225f43
4e8a148
3503d68
 
c79b27e
 
b0801de
3503d68
c79b27e
0225f43
3503d68
 
c79b27e
b0801de
 
c79b27e
3503d68
 
 
 
0225f43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort

# Load YOLOv12x model
MODEL_PATH = "yolov12x.pt"
model = YOLO(MODEL_PATH)

# COCO dataset class ID for truck
TRUCK_CLASS_ID = 7  # "truck"

# Initialize SORT tracker
tracker = Sort()

# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.5

# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50

# Dictionary to define keyword-based time intervals
TIME_INTERVALS = {
    "one": 1,
    "two": 2,
    "three": 3,
    "four": 4,
    "five": 5,
    "six": 6,
    "seven": 7,
    "eight": 8,
    "nine": 9,
    "ten": 10,
    "eleven": 11
}


def determine_time_interval(video_filename):
    print(f"Checking filename: {video_filename}")  # Debugging
    for keyword, interval in TIME_INTERVALS.items():
        if keyword in video_filename:
            print(f"Matched keyword: {keyword} -> Interval: {interval}")  # Debugging
            return interval
    print("No keyword match, using default interval: 5")  # Debugging
    return 5  # Default interval if no keyword matches
    

def count_unique_trucks(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return "Error: Unable to open video file."

    unique_truck_ids = set()
    truck_history = {}

    # Get FPS of the video
    fps = int(cap.get(cv2.CAP_PROP_FPS))

    # Extract filename from the path and convert to lowercase
    video_filename = os.path.basename(video_path).lower()

    # Determine the dynamic time interval based on filename keywords
    time_interval = determine_time_interval(video_filename)
    # Get total frames in the video
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Ensure frame_skip does not exceed total frames
    frame_skip = min(fps * time_interval, total_frames)

    #frame_skip = fps * time_interval  # Convert time interval to frame count

    frame_count = 0

    while True:
        ret, frame = cap.read()
        if not ret:
            break  # End of video

        frame_count += 1
        if frame_count % frame_skip != 0:
            continue  # Skip frames to process only every 5 seconds

        # Run YOLOv12x inference
        results = model(frame, verbose=False)

        detections = []
        for result in results:
            for box in result.boxes:
                class_id = int(box.cls.item())  # Get class ID
                confidence = float(box.conf.item())  # Get confidence score

                # Track only trucks
                if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
                    x1, y1, x2, y2 = map(int, box.xyxy[0])  # Get bounding box
                    detections.append([x1, y1, x2, y2, confidence])

        if len(detections) > 0:
            detections = np.array(detections)
            tracked_objects = tracker.update(detections)

            for obj in tracked_objects:
                truck_id = int(obj[4])  # Unique ID assigned by SORT
                x1, y1, x2, y2 = obj[:4]  # Get the bounding box coordinates

                truck_center = (x1 + x2) / 2, (y1 + y2) / 2  # Calculate the center of the truck

                # If truck is already in history, check the movement distance
                if truck_id in truck_history:
                    last_position = truck_history[truck_id]["position"]
                    distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))

                    if distance > DISTANCE_THRESHOLD:
                        # If the truck moved significantly, count as new
                        unique_truck_ids.add(truck_id)

                else:
                    # If truck is not in history, add it
                    truck_history[truck_id] = {
                        "frame_count": frame_count,
                        "position": truck_center
                    }
                    unique_truck_ids.add(truck_id)

    cap.release()

    return {"Total Unique Trucks": len(unique_truck_ids)}

# Gradio UI function
def analyze_video(video_file):
    result = count_unique_trucks(video_file)
    return "\n".join([f"{key}: {value}" for key, value in result.items()])

# Define Gradio interface
import gradio as gr
iface = gr.Interface(
    fn=analyze_video,
    inputs=gr.Video(label="Upload Video"),
    outputs=gr.Textbox(label="Analysis Result"),
    title="YOLOv12x Unique Truck Counter",
    description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()