Spaces:
Sleeping
Sleeping
File size: 3,437 Bytes
69545c2 0a9b429 4e8a148 d211767 0a9b429 9bb7cec 69545c2 9bb7cec 4e8a148 d211767 0a9b429 69545c2 0a9b429 4e8a148 0a9b429 4e8a148 b0801de 4e8a148 0a9b429 4e8a148 a210028 4e5fb8f d211767 a210028 d211767 a210028 b0801de d211767 4e5fb8f d211767 0a9b429 b0801de 4e8a148 3503d68 69545c2 b0801de 3503d68 b0801de 3503d68 69545c2 b0801de 69545c2 3503d68 611534d 69545c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort
# Load YOLOv12x model
MODEL_PATH = "yolov12x.pt"
model = YOLO(MODEL_PATH)
# COCO dataset class ID for truck
TRUCK_CLASS_ID = 7 # "truck"
# Initialize SORT tracker
tracker = Sort()
# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.5
# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50
def count_unique_trucks(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
unique_truck_ids = set()
truck_history = {}
# Get FPS of the video
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_skip = fps * 2 # Skip frames every 5 seconds
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
if frame_count % frame_skip != 0:
continue # Skip frames to process only every 5 seconds
# Run YOLOv12x inference
results = model(frame, verbose=False)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls.item()) # Get class ID
confidence = float(box.conf.item()) # Get confidence score
# Track only trucks
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
detections.append([x1, y1, x2, y2, confidence])
if len(detections) > 0:
detections = np.array(detections)
tracked_objects = tracker.update(detections)
for obj in tracked_objects:
truck_id = int(obj[4]) # Unique ID assigned by SORT
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate the center of the truck
# If truck is already in history, check the movement distance
if truck_id in truck_history:
last_position = truck_history[truck_id]["position"]
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
if distance > DISTANCE_THRESHOLD:
# If the truck moved significantly, count as new
unique_truck_ids.add(truck_id)
else:
# If truck is not in history, add it
truck_history[truck_id] = {
"frame_count": frame_count,
"position": truck_center
}
unique_truck_ids.add(truck_id)
cap.release()
return {"Total Unique Trucks": len(unique_truck_ids)}
# Gradio UI function
def analyze_video(video_file):
result = count_unique_trucks(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Define Gradio interface
import gradio as gr
iface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="Analysis Result"),
title="YOLOv12x Unique Truck Counter",
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()
|