denis_cnn_model / app.py
hb-setosys's picture
Create app.py
8d28437 verified
raw
history blame
862 Bytes
import gradio as gr
import tensorflow as tf
import numpy as np
# Load the Keras model
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
# Define a function to preprocess input and make predictions
def predict(image):
# Preprocess the image (resize, normalize, etc.)
image = tf.image.resize(image, (224, 224)) # Example: Resize to 224x224
image = np.expand_dims(image, axis=0) # Add batch dimension
image = image / 255.0 # Normalize pixel values
# Perform prediction
prediction = model.predict(image)
return {"prediction": prediction.tolist()}
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs="image", # Text input for comma-separated values
outputs="json" # JSON output for prediction results
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()