Spaces:
Running
Running
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
# Load the Keras model | |
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5") | |
# Define a function to preprocess input and make predictions | |
def predict(image): | |
# Preprocess the image (resize, normalize, etc.) | |
image = tf.image.resize(image, (224, 224)) # Example: Resize to 224x224 | |
image = np.expand_dims(image, axis=0) # Add batch dimension | |
image = image / 255.0 # Normalize pixel values | |
# Perform prediction | |
prediction = model.predict(image) | |
return {"prediction": prediction.tolist()} | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs="image", # Text input for comma-separated values | |
outputs="json" # JSON output for prediction results | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |