farsi-chat / cod-app.text
hbsanaweb's picture
Create cod-app.text
7bf2580 verified
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings # Updated for Persian embeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from groq import Groq
import requests
from bs4 import BeautifulSoup
from serpapi import GoogleSearch
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = Groq(api_key="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")
embedding_model = HuggingFaceEmbeddings(model_name="HooshvareLab/bert-fa-base-uncased")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def process_pdf_with_langchain(pdf_path):
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embedding_model)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
def scrape_google_search(query, num_results=3):
try:
params = {
"q": query,
"hl": "fa",
"gl": "ir",
"num": num_results,
"api_key": SERPAPI_KEY,
}
search = GoogleSearch(params)
results = search.get_dict()
if "error" in results:
return f"Error: {results['error']}"
search_results = []
for result in results.get("organic_results", []):
title = result.get("title", "No Title")
link = result.get("link", "No Link")
search_results.append(f"{title}: {link}")
return "\n".join(search_results) if search_results else "No results found"
except Exception as e:
logger.error(f"Error scraping Google search: {e}")
return f"Error: {e}"
def scrape_webpage(url):
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.content, "html.parser")
text = soup.get_text(separator="\n")
return text.strip()
except Exception as e:
logger.error(f"Error scraping webpage {url}: {e}")
return f"Error: {e}"
def generate_response(query, retriever=None, use_web_search=False, scrape_web=False):
try:
knowledge = ""
if retriever:
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
if use_web_search:
web_results = scrape_google_search(query)
knowledge += f"\n\nWeb Search Results:\n{web_results}"
if scrape_web:
urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")]
for url in urls:
webpage_content = scrape_webpage(url)
knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}"
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = (
f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
)
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model= "gemma2-9b-it" #"llama-3.3-70b-versatile",
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
return response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}"
def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False, scrape_web=False):
global retriever
if pdf_file is not None:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")]
response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search, scrape_web=scrape_web)
chat_box.append(("You", user_message))
chat_box.append(("ParvizGPT", response))
return chat_box
def clear_memory():
memory.clear()
return []
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(
label="Your Message",
placeholder="Type your message here and press Enter...",
lines=1,
interactive=True,
)
enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
submit_btn = gr.Button("Submit")
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
interface.launch()