Spaces:
Runtime error
Runtime error
File size: 7,243 Bytes
8eeee11 f159097 8eeee11 235b9a3 8eeee11 235b9a3 992f75b 6059241 8eeee11 fc237d8 b00b76d 8eeee11 90df0db b00b76d 992f75b 1a545a7 6059241 b00b76d fc237d8 d959e29 b00b76d d959e29 25479f9 d959e29 b00b76d d959e29 b00b76d 8c9db40 b00b76d 1a545a7 8eeee11 6059241 b00b76d 6059241 b00b76d 19a62fb b00b76d 6059241 b00b76d 9d3f2c3 fc237d8 c15464d 8eeee11 6059241 8eeee11 1c4c9dd fc237d8 368b420 8eeee11 1c4c9dd d213f0f 86988fa d213f0f 8eeee11 86988fa 8eeee11 368b420 4d7b640 8eeee11 86988fa 8eeee11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# -*- coding: utf-8 -*-
"""Deploy OceanApp demo.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing

# Modelo
YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
## Gradio Inferencia

Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
----------------------------------------------------------------------
YOLOv5 Gradio demo
*Author: Ultralytics LLC and Gradio*
# C贸digo
"""
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
import gradio as gr
import pandas as pd
import torch
import logging
import json
import re
import os
import boto3
from botocore.exceptions import NoCredentialsError
import tempfile
import io
from PIL import Image
from pandas import json_normalize
# Imagenes por defecto para HF
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
aws_access_key_id = os.environ['aws_access_key_id']
aws_secret_access_key = os.environ['aws_secret_access_key']
region = os.environ['region']
#Elimina espacios en blanco
def removeStr(string):
return string.replace(" ", "")
#Informacion del Dataframe a partir del json
def arrayListax(json_data):
dict = json_data
df2 = json_normalize(dict['detail'])
return df2
#Imagen temporal guardada en upload_file
def tempFileJSON(img_file):
temp = tempfile.NamedTemporaryFile(mode="wb")
with temp as jpg:
jpg.write(img_file)
print(jpg.name)
uf = upload_file(jpg.name)
return uf
# Envio de imagenes a S3
def upload_file(file_name, bucket=None, object_name=None):
"""Upload a file to an S3 bucket
:param file_name: File to upload
:param bucket: Bucket to upload to
:param object_name: S3 object name. If not specified then file_name is used
:return: Json if file was uploaded, else False
"""
# Si S3 object_name no esta especificado, usa file_name
if object_name is None:
object_name = os.path.basename(file_name+".jpg")
if bucket is None:
bucket = 'oceanapp2'
s3_client = boto3.client('s3',aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key)
aws_region = boto3.session.Session().region_name
# Subida del archivo
try:
with open(file_name, "rb") as f:
response = s3_client.upload_fileobj(f, bucket, object_name)
s3_url = f"https://{bucket}.s3.amazonaws.com/{object_name}"
stado = '"url_details":[{"statusCode":200, "s3_url":"'+s3_url+'"}]'
print(s3_url)
except FileNotFoundError:
print("The file was not found")
return False
except NoCredentialsError as e:
logging.error(e)
return False
return stado
# Contador de los resultados del modelo
def qtyEspecies(datax, datay, resImg):
numLobos = 0
numPelicanos = 0
dfEspecies = pd.DataFrame(datax)
for i in range(0, dfEspecies['name'].size):
if(dfEspecies['class'][i] == 0):
numLobos= numLobos + 1
if(dfEspecies['class'][i] == 1):
numPelicanos= numPelicanos + 1
strlista = '"detail":[{"quantity":"'+str(numLobos)+'","description":"Lobo marino"},{"quantity":"'+str(numPelicanos)+'","description":"Pelicano"}]'
data = '{"image":"'+str(removeStr(datay[0:9]))+'","size":"'+str(removeStr(datay[11:18]))+'",'+strlista+','+resImg+'}'
json_data = json.loads(data)
return json_data
# Modelo Yolov5x
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
def yolo(size, iou, conf, im):
try:
'''Wrapper fn for gradio'''
# gain
g = (int(size) / max(im.size))
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS)
model.iou = iou
model.conf = conf
# inference
results2 = model(im)
# actualiza el results.imgs con boxes y labels
results2.render()
results3 = str(results2)
# contador de especies
results5=results2.pandas().xyxy[0].sort_values('name')
# transforma la img en bytes
pil_im = Image.fromarray(results2.ims[0])
b = io.BytesIO()
pil_im.save(b, 'jpeg')
im_bytes = b.getvalue()
fileImg = tempFileJSON(im_bytes)
#Envia la informacion al contador de especies
results6 = qtyEspecies(results5,results3,fileImg)
lista2 = arrayListax(results6)
return Image.fromarray(results2.ims[0]), lista2, results6
except Exception as e:
logging.error(e, exc_info=True)
#------------ Interface-------------
in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value')
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold')
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold')
in4 = gr.inputs.Image(type='pil', label="Original Image")
out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5")
out3 = gr.outputs.Dataframe(type="pandas", label="Descripci贸n", headers=['Cantidad','Especie'])
out4 = gr.outputs.JSON(label="JSON")
#-------------- Text-----
title = 'OceanApp'
description = """
<p>
<center>
<p>Sistema para el reconocimiento de las especies en la pesca acompa帽ante de cerco, utilizando redes neuronales convolucionales para una empresa del sector pesquero en los puertos de callao y paracas.</p>
<p><b>Nota</b>: Este modelo solo acepta imagenes de <b>Lobos marinos</b> o <b>Pelicanos</b> proporcionados por empresas peruanas.</p>
<center>
<img src="https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg" alt="logo" width="250"/>
</center>
</center>
</p>
"""
article ="<p style='text-align: center'><a href='' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/MssLune/OceanApp-Model' target='_blank'>Repo Github</a></p></center></p>"
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']]
iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=[out2,out3,out4], title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch(
debug=True)
iface.launch()
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
## Citation
[](https://zenodo.org/badge/latestdoi/264818686)
""" |