Spaces:
Running
Running
File size: 14,582 Bytes
5263bd3 f1d4be6 5263bd3 4a7c026 40fe6da a6886ca 962ae70 5263bd3 b5edb58 962ae70 f1d4be6 7e92f7c 870813f f1d4be6 870813f a6886ca 7e92f7c a6886ca 962ae70 ef80028 a6886ca 7e92f7c a6886ca f1d4be6 7e92f7c ef80028 7e92f7c 962ae70 ef80028 7e92f7c ef80028 7e92f7c ef80028 962ae70 7e92f7c 962ae70 7e92f7c 962ae70 ef80028 a6886ca 962ae70 7e92f7c f1d4be6 ef80028 7e19501 7e92f7c f1d4be6 ef80028 7e92f7c ef80028 962ae70 f1d4be6 7e92f7c 8c49ca8 7e92f7c a6886ca 7e92f7c a6886ca 7e92f7c 3b775b7 7e92f7c a6886ca 7e92f7c ef80028 7aea9ac 7e92f7c 555d484 7e92f7c 7aea9ac 555d484 7aea9ac ef80028 7aea9ac 962ae70 7aea9ac 962ae70 7e92f7c 7aea9ac 7e92f7c 7aea9ac 962ae70 7aea9ac 962ae70 7e92f7c 7aea9ac 7e92f7c 7aea9ac b5edb58 7e92f7c 7aea9ac 962ae70 7aea9ac f1d4be6 962ae70 ef80028 7e92f7c ef80028 f1d4be6 ef80028 f1d4be6 0681a74 f1d4be6 962ae70 ef80028 962ae70 f1d4be6 ef80028 962ae70 ef80028 f1d4be6 962ae70 ef80028 723da6d ef80028 962ae70 a6886ca b5edb58 962ae70 f1d4be6 ef80028 f1d4be6 7e92f7c ef80028 962ae70 ef80028 7e92f7c 962ae70 7e92f7c ef80028 962ae70 7e92f7c 962ae70 7e92f7c 962ae70 7e92f7c 962ae70 ef80028 962ae70 ef80028 962ae70 ef80028 f1d4be6 ef80028 7e92f7c ef80028 8f84058 7e92f7c ef80028 7e92f7c ef80028 7e92f7c 962ae70 ef80028 962ae70 ef80028 7e92f7c 962ae70 ef80028 0d2d632 723da6d 962ae70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap values and model prediction.
"""
model.eval()
with torch.no_grad():
# Get baseline prediction
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Calculate impact of zeroing each feature
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
orig_value = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob # how much removing the feature changed the prediction
shap_values.append(impact)
x_zeroed[0, i] = orig_value # restore the original value
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION (LINEAR HEATMAP)
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
# Create the list of k-mers (in lexicographic order)
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
# Arrays to accumulate sums (SHAP) and coverage counts
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
# Slide over the sequence, summing SHAP values for overlapping positions
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
# Get the SHAP value for this k-mer
value = shap_values[kmer_dict[kmer]]
# Accumulate it for each base in the k-mer
shap_sums[i : i + k] += value
coverage[i : i + k] += 1
# Compute the average SHAP per base (avoid divide-by-zero)
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
def plot_linear_heatmap(shap_means):
"""
Plots a 1D heatmap of per-base SHAP contributions.
Negative = push toward Non-Human, Positive = push toward Human.
"""
# Reshape into (1, -1) so that imshow displays it as a single row
heatmap_data = shap_means.reshape(1, -1)
fig, ax = plt.subplots(figsize=(12, 2))
# We'll use a diverging color map (red/blue)
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
# Add colorbar
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([]) # single row, so hide the y-axis
ax.set_xlabel('Position in Sequence')
ax.set_title('Per-base SHAP Heatmap')
plt.tight_layout()
return fig
###############################################################################
# 5. OTHER PLOTS: BAR PLOT OF TOP-K AND SEQUENCE IMPACT VISUALIZATION
###############################################################################
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
plt.figure(figsize=(10, 6))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis() # most important at top
return plt.gcf()
def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
"""
Create a SHAP-style visualization of sequence impacts.
Shows each k-mer's contribution in context.
"""
k = 4 # k-mer size
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Find all k-mers and their impacts
kmer_impacts = []
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
impact = shap_values[kmer_dict[kmer]]
kmer_impacts.append((i, kmer, impact))
# Sort by absolute impact
kmer_impacts.sort(key=lambda x: abs(x[2]), reverse=True)
# Limit display to top 30 k-mers
display_kmers = kmer_impacts[:30]
# Calculate figure height based on number of k-mers
fig_height = min(20, max(8, len(display_kmers) * 0.4))
# Create figure with controlled size
fig = plt.figure(figsize=(12, fig_height))
ax = plt.gca()
# Add title and base value
plt.text(0.01, 1.02, f"base value = {base_prob:.3f}", transform=ax.transAxes, fontsize=10)
# Plot k-mers with controlled spacing
y_spacing = 0.9 / max(len(display_kmers), 1)
y_position = 0.95
for pos, kmer, impact in display_kmers:
pre_sequence = sequence[max(0, pos-20):pos]
post_sequence = sequence[pos+len(kmer):min(pos+len(kmer)+20, len(sequence))]
# Add ellipsis if truncated
pre_ellipsis = "..." if pos > 20 else ""
post_ellipsis = "..." if pos+len(kmer)+20 < len(sequence) else ""
# Choose color based on impact
color = '#ffcccb' if impact > 0 else '#cce0ff'
arrow = 'β' if impact > 0 else 'β'
# Draw text elements
plt.text(0.01, y_position, f"{pre_ellipsis}{pre_sequence}", fontsize=9)
plt.text(0.01 + len(f"{pre_ellipsis}{pre_sequence}")/50, y_position,
kmer, fontsize=9, bbox=dict(facecolor=color, alpha=0.3, pad=1))
plt.text(0.01 + (len(f"{pre_ellipsis}{pre_sequence}") + len(kmer))/50,
y_position, f"{post_sequence}{post_ellipsis}", fontsize=9)
# Add impact value
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=9)
y_position -= y_spacing
plt.axis('off')
# Adjust layout
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
return fig
###############################################################################
# 6. HELPER FUNCTION: FIG TO IMAGE
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image."""
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
###############################################################################
# 7. MAIN PREDICTION FUNCTION
###############################################################################
def predict(file_obj, top_kmers=10, fasta_text=""):
"""Main prediction function for Gradio interface."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}", None, None, None
else:
return "Please provide a FASTA sequence.", None, None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found.", None, None, None
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
# Remove 'weights_only=True' if it causes errors; it's not a standard argument.
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and get prediction
shap_values, prob_human = calculate_shap_values(model, x_tensor)
# Prediction text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
f"Human Probability: {prob_human:.3f}",
"\nTop Contributing k-mers:"
]
# Create k-mer lists for visualization
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
# 1) K-mer importance bar plot
importance_plot = create_importance_bar_plot(shap_values, kmers, top_kmers)
importance_img = fig_to_image(importance_plot)
# 2) SHAP-style textual sequence impact
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
sequence_img = fig_to_image(sequence_plot)
# 3) Linear heatmap across full genome
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
heatmap_fig = plot_linear_heatmap(shap_means)
heatmap_img = fig_to_image(heatmap_fig)
return "\n".join(results), importance_img, sequence_img, heatmap_img
###############################################################################
# 8. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results = gr.Textbox(label="Analysis Results", lines=10)
kmer_plot = gr.Image(label="K-mer Importance Plot")
shap_plot = gr.Image(label="Sequence Impact Visualization (SHAP-style)")
heatmap_plot = gr.Image(label="Genome Heatmap")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input],
outputs=[results, kmer_plot, shap_plot, heatmap_plot]
)
gr.Markdown("""
### Visualization Guide
- **K-mer Importance Plot**: Shows the most influential k-mers and their SHAP values
- **Sequence Impact Visualization**: Shows the sequence with highlighted k-mers:
- Red highlights = pushing toward human origin
- Blue highlights = pushing toward non-human origin
- Arrows (β/β) show impact direction
- Values show impact magnitude
- **Genome Heatmap**: Per-base SHAP values across the entire sequence
- Red = push toward human
- Blue = push toward non-human
""")
if __name__ == "__main__":
iface.launch()
|