HostClassifier / app.py
hiyata's picture
Update app.py
4c1d061 verified
raw
history blame
6.81 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import shap
import matplotlib.pyplot as plt
import io
from PIL import Image # Import PIL for image handling
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""Calculate feature importance using gradient-based method"""
x.requires_grad_(True)
output = self.network(x)
importance = torch.zeros_like(x)
for i in range(output.shape[1]):
if x.grad is not None:
x.grad.zero_()
output[..., i].sum().backward(retain_graph=True)
importance += torch.abs(x.grad)
return importance
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert sequence to k-mer frequency vector"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def predict(file_obj):
if file_obj is None:
return "Please upload a FASTA file", None
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}", None
k = 4
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(256).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
except Exception as e:
return f"Error loading model: {str(e)}", None
results_text = ""
plot_image = None
try:
sequences = parse_fasta(text)
header, seq = sequences[0]
raw_freq_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(kmer_vector).to(device)
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
importance = model.get_feature_importance(X_tensor)
kmer_importance = importance[0].cpu().numpy()
if np.max(np.abs(kmer_importance)) != 0:
kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002
top_k = 10
top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1]
important_kmers = [
{
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
'importance': float(kmer_importance[i]),
'frequency': float(raw_freq_vector[i]),
'scaled': float(kmer_vector[0][i])
}
for i in top_indices
]
top_features = [item['kmer'] for item in important_kmers]
top_values = [item['importance'] for item in important_kmers]
others_mask = np.ones_like(kmer_importance, dtype=bool)
others_mask[top_indices] = False
others_sum = np.sum(kmer_importance[others_mask])
top_features.append("Others")
top_values.append(others_sum)
# Set base_values and expected_value to 0.5 for the binary classification baseline
explanation = shap.Explanation(
values=np.array(top_values),
base_values=0.5,
data=np.array([
raw_freq_vector[kmer_dict[feat]] if feat != "Others"
else np.sum(raw_freq_vector[others_mask])
for feat in top_features
]),
feature_names=top_features
)
explanation.expected_value = 0.5
fig = shap.plots._waterfall.waterfall_legacy(explanation, show=False)
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
plot_image = Image.open(buf)
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
results_text += f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
Most influential k-mers (ranked by importance):"""
for kmer in important_kmers:
results_text += f"\n {kmer['kmer']}: "
results_text += f"impact={kmer['importance']:.4f}, "
results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence "
if kmer['scaled'] > 0:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)"
else:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)"
except Exception as e:
return f"Error processing sequences: {str(e)}", None
return results_text, plot_image
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")],
title="Virus Host Classifier"
)
if __name__ == "__main__":
iface.launch(share=True)