HostClassifier / app.py
hiyata's picture
Update app.py
a6886ca verified
raw
history blame
17 kB
import gradio as gr
import torch
import joblib
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
from itertools import product
# --------------- Model Definition ---------------
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_gradient_importance(self, x, class_index=1):
"""
Calculate gradient-based importance for each input feature.
By default, we compute the gradient wrt the 'human' class (index=1).
This method is akin to a raw gradient or 'saliency' approach.
"""
x = x.clone().detach().requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Probability of the specified class
target_prob = probs[..., class_index]
# Zero existing gradients if any
if x.grad is not None:
x.grad.zero_()
# Backprop on that probability
target_prob.backward()
# Raw gradient is now in x.grad
importance = x.grad.detach()
# Optional: Multiply by input to get a more "integrated gradients"-like measure
# importance = importance * x.detach()
return importance, float(target_prob)
# --------------- Utility Functions ---------------
def parse_fasta(text: str):
"""
Parse a FASTA string and return a list of (header, sequence) pairs.
"""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""
Convert a nucleotide sequence into a k-mer frequency vector.
Defaults to k=4.
"""
# Generate all possible k-mers
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def compute_sequence_stats(sequence: str):
"""
Compute various statistics for a given sequence:
- Length
- GC content (%)
- A/C/G/T counts
"""
length = len(sequence)
if length == 0:
return {
'length': 0,
'gc_content': 0,
'counts': {'A': 0, 'C': 0, 'G': 0, 'T': 0}
}
counts = {
'A': sequence.count('A'),
'C': sequence.count('C'),
'G': sequence.count('G'),
'T': sequence.count('T')
}
gc_content = (counts['G'] + counts['C']) / length * 100.0
return {
'length': length,
'gc_content': gc_content,
'counts': counts
}
# --------------- Visualization Functions ---------------
def plot_shap_like_bars(kmers, importance_values, top_k=10):
"""
Create a bar chart that mimics a SHAP summary plot:
- k-mers on y-axis
- importance magnitude on x-axis
- color indicating positive (push towards human) vs negative (push towards non-human)
"""
abs_importance = np.abs(importance_values)
# Sort by absolute importance
sorted_indices = np.argsort(abs_importance)[::-1]
top_indices = sorted_indices[:top_k]
# Prepare data
top_kmers = [kmers[i] for i in top_indices]
top_importances = importance_values[top_indices]
# Create plot
fig, ax = plt.subplots(figsize=(8, 6))
colors = ['green' if val > 0 else 'red' for val in top_importances]
ax.barh(range(len(top_kmers)), np.abs(top_importances), color=colors)
ax.set_yticks(range(len(top_kmers)))
ax.set_yticklabels(top_kmers)
ax.invert_yaxis() # So that the highest value is at the top
ax.set_xlabel("Feature Importance (Gradient Magnitude)")
ax.set_title(f"Top-{top_k} SHAP-like Feature Importances")
plt.tight_layout()
return fig
def plot_kmer_distribution(kmer_freq_vector, kmers):
"""
Plot a histogram of k-mer frequencies for the entire vector.
(Optional if you want a quick distribution overview)
"""
fig, ax = plt.subplots(figsize=(10, 4))
ax.bar(range(len(kmer_freq_vector)), kmer_freq_vector, color='blue', alpha=0.6)
ax.set_xlabel("K-mer Index")
ax.set_ylabel("Frequency")
ax.set_title("K-mer Frequency Distribution")
ax.set_xticks([])
plt.tight_layout()
return fig
def create_step_visualization(important_kmers, human_prob):
"""
Re-implementation of your step-wise probability plot.
Shows how each top k-mer 'pushes' the probability from 0.5 to the final value.
"""
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
# Start from 0.5
current_prob = 0.5
steps = [('Start', current_prob, 0)]
for kmer in important_kmers:
change = kmer['impact'] * (-1 if kmer['direction'] == 'non-human' else 1)
current_prob += change
steps.append((kmer['kmer'], current_prob, change))
x_vals = range(len(steps))
y_vals = [s[1] for s in steps]
ax.step(x_vals, y_vals, 'b-', where='post', label='Probability', linewidth=2)
ax.plot(x_vals, y_vals, 'b.', markersize=10)
# Reference line at 0.5
ax.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)')
ax.set_ylim(0, 1)
ax.set_ylabel('Human Probability')
ax.set_title(f'K-mer Contributions (final p={human_prob:.3f})')
ax.grid(True, linestyle='--', alpha=0.7)
for i, (kmer, prob, change) in enumerate(steps):
ax.annotate(kmer,
(i, prob),
xytext=(0, 10 if i % 2 == 0 else -20),
textcoords='offset points',
ha='center',
rotation=45)
if i > 0:
change_text = f'{change:+.3f}'
color = 'green' if change > 0 else 'red'
ax.annotate(change_text,
(i, prob),
xytext=(0, -20 if i % 2 == 0 else 10),
textcoords='offset points',
ha='center',
color=color)
ax.legend()
plt.tight_layout()
return fig
def plot_kmer_freq_and_sigma(important_kmers):
"""
Plot frequencies vs. sigma from mean for the top k-mers.
This reuses logic from the original create_visualization second subplot,
but as its own function for clarity.
"""
fig, ax = plt.subplots(figsize=(8, 5))
# Prepare data
kmers = [k['kmer'] for k in important_kmers]
frequencies = [k['occurrence'] for k in important_kmers]
sigmas = [k['sigma'] for k in important_kmers]
colors = ['green' if k['direction'] == 'human' else 'red' for k in important_kmers]
x = np.arange(len(kmers))
width = 0.35
# Frequency bars
ax.bar(x - width/2, frequencies, width, label='Frequency (%)', color=colors, alpha=0.6)
# Create a twin axis for sigma
ax2 = ax.twinx()
# Sigma bars
ax2.bar(x + width/2, sigmas, width, label='σ from mean',
color=[c if s > 0 else 'gray' for c, s in zip(colors, sigmas)], alpha=0.3)
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45)
ax.set_ylabel('Frequency (%)')
ax2.set_ylabel('Standard Deviations (σ) from Mean')
ax.set_title("K-mer Frequencies & Statistical Significance")
lines1, labels1 = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines1 + lines2, labels1 + labels2, loc='best')
plt.tight_layout()
return fig
# --------------- Main Prediction Logic ---------------
def predict_fasta(
file_obj,
k_size=4,
top_k=10,
advanced_analysis=False
):
"""
Main function to predict classes for each sequence in an uploaded FASTA.
Returns:
- Combined textual report for all sequences
- A list of generated PIL Image plots
"""
# 1. Read raw text from file or string
if file_obj is None:
return "Please upload a FASTA file", []
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8', errors='replace')
except Exception as e:
return f"Error reading file: {str(e)}", []
# 2. Parse the FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found!", []
# 3. Load model & scaler
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(input_shape=(4 ** k_size)).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
model.eval()
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model/scaler: {str(e)}", []
# 4. Prepare k-mer dictionary for reference
all_kmers = [''.join(p) for p in product("ACGT", repeat=k_size)]
kmer_dict = {km: i for i, km in enumerate(all_kmers)}
# 5. Iterate over sequences and build output
final_text_report = []
plots = []
for idx, (header, seq) in enumerate(sequences, start=1):
seq_stats = compute_sequence_stats(seq)
# Convert sequence -> raw freq -> scaled freq
raw_kmer_freq = sequence_to_kmer_vector(seq, k=k_size)
scaled_kmer_freq = scaler.transform(raw_kmer_freq.reshape(1, -1))
X_tensor = torch.FloatTensor(scaled_kmer_freq).to(device)
# Predict
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
# Determine class
pred_class = torch.argmax(probs, dim=1).item()
pred_label = 'human' if pred_class == 1 else 'non-human'
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
confidence = float(torch.max(probs[0]).item())
# Compute gradient-based importance
importance, target_prob = model.get_gradient_importance(X_tensor, class_index=1)
importance = importance[0].cpu().numpy() # shape: (num_features,)
# Identify top-k features (by absolute gradient)
abs_importance = np.abs(importance)
sorted_indices = np.argsort(abs_importance)[::-1]
top_indices = sorted_indices[:top_k]
# Build a list of top k-mers
top_kmers_info = []
for i in top_indices:
kmer_name = all_kmers[i]
imp_val = float(importance[i])
direction = 'human' if imp_val > 0 else 'non-human'
freq_perc = float(raw_kmer_freq[i] * 100.0) # in percent
sigma = float(scaled_kmer_freq[0][i]) # This is the scaled value (stdev from mean if the scaler is StandardScaler)
top_kmers_info.append({
'kmer': kmer_name,
'impact': abs(imp_val),
'direction': direction,
'occurrence': freq_perc,
'sigma': sigma
})
# Text summary for this sequence
seq_report = []
seq_report.append(f"=== Sequence {idx} ===")
seq_report.append(f"Header: {header}")
seq_report.append(f"Length: {seq_stats['length']}")
seq_report.append(f"GC Content: {seq_stats['gc_content']:.2f}%")
seq_report.append(f"A: {seq_stats['counts']['A']}, C: {seq_stats['counts']['C']}, G: {seq_stats['counts']['G']}, T: {seq_stats['counts']['T']}")
seq_report.append(f"Prediction: {pred_label} (Confidence: {confidence:.4f})")
seq_report.append(f" Human Probability: {human_prob:.4f}")
seq_report.append(f" Non-human Probability: {non_human_prob:.4f}")
seq_report.append(f"\nTop-{top_k} Influential k-mers (by gradient magnitude):")
for tkm in top_kmers_info:
seq_report.append(
f" {tkm['kmer']}: pushes towards {tkm['direction']} "
f"(impact={tkm['impact']:.4f}), occurrence={tkm['occurrence']:.2f}%, "
f"sigma={tkm['sigma']:.2f}"
)
final_text_report.append("\n".join(seq_report))
# 6. Generate Plots (for each sequence)
if advanced_analysis:
# 6A. SHAP-like bar chart
fig_shap = plot_shap_like_bars(
kmers=all_kmers,
importance_values=importance,
top_k=top_k
)
buf_shap = io.BytesIO()
fig_shap.savefig(buf_shap, format='png', bbox_inches='tight', dpi=150)
buf_shap.seek(0)
plots.append(Image.open(buf_shap))
plt.close(fig_shap)
# 6B. k-mer distribution histogram
fig_kmer_dist = plot_kmer_distribution(raw_kmer_freq, all_kmers)
buf_dist = io.BytesIO()
fig_kmer_dist.savefig(buf_dist, format='png', bbox_inches='tight', dpi=150)
buf_dist.seek(0)
plots.append(Image.open(buf_dist))
plt.close(fig_kmer_dist)
# 6C. Original step visualization for top k k-mers
# Sort by actual 'impact' to preserve that step logic
# (largest absolute impact first)
top_kmers_info_step = sorted(top_kmers_info, key=lambda x: x['impact'], reverse=True)
fig_step = create_step_visualization(top_kmers_info_step, human_prob)
buf_step = io.BytesIO()
fig_step.savefig(buf_step, format='png', bbox_inches='tight', dpi=150)
buf_step.seek(0)
plots.append(Image.open(buf_step))
plt.close(fig_step)
# 6D. Frequency vs. sigma bar chart
fig_freq_sigma = plot_kmer_freq_and_sigma(top_kmers_info_step)
buf_freq_sigma = io.BytesIO()
fig_freq_sigma.savefig(buf_freq_sigma, format='png', bbox_inches='tight', dpi=150)
buf_freq_sigma.seek(0)
plots.append(Image.open(buf_freq_sigma))
plt.close(fig_freq_sigma)
# Combine all text results
combined_text = "\n\n".join(final_text_report)
return combined_text, plots
# --------------- Gradio Interface ---------------
def run_prediction(
file_obj,
k_size,
top_k,
advanced_analysis
):
"""
Wrapper for Gradio to handle the outputs in (text, List[Image]) form.
"""
text_output, pil_images = predict_fasta(
file_obj=file_obj,
k_size=k_size,
top_k=top_k,
advanced_analysis=advanced_analysis
)
return text_output, pil_images
with gr.Blocks() as demo:
gr.Markdown("# Virus Host Classifier (Improved!)")
gr.Markdown(
"Upload a FASTA file and configure k-mer size, number of top features, "
"and whether to run advanced analysis (plots of SHAP-like bars & k-mer distribution)."
)
with gr.Row():
with gr.Column():
fasta_file = gr.File(label="Upload FASTA file", type="binary")
kmer_slider = gr.Slider(minimum=2, maximum=6, value=4, step=1, label="K-mer Size")
topk_slider = gr.Slider(minimum=5, maximum=20, value=10, step=1, label="Top-k Features")
advanced_check = gr.Checkbox(value=False, label="Advanced Analysis")
predict_button = gr.Button("Predict")
with gr.Column():
results_text = gr.Textbox(
label="Results",
lines=20,
placeholder="Prediction results will appear here..."
)
# We can display multiple images in a Gallery or as separate outputs.
plots_gallery = gr.Gallery(label="Analysis Plots").style(grid=[2], height="auto")
predict_button.click(
fn=run_prediction,
inputs=[fasta_file, kmer_slider, topk_slider, advanced_check],
outputs=[results_text, plots_gallery]
)
if __name__ == "__main__":
demo.launch(share=True)