Spaces:
Running
Running
import gradio as gr | |
import torch | |
import joblib | |
import numpy as np | |
from itertools import product | |
import torch.nn as nn | |
import matplotlib.pyplot as plt | |
import io | |
from PIL import Image | |
############################################################################### | |
# 1. MODEL DEFINITION | |
############################################################################### | |
class VirusClassifier(nn.Module): | |
def __init__(self, input_shape: int): | |
super(VirusClassifier, self).__init__() | |
self.network = nn.Sequential( | |
nn.Linear(input_shape, 64), | |
nn.GELU(), | |
nn.BatchNorm1d(64), | |
nn.Dropout(0.3), | |
nn.Linear(64, 32), | |
nn.GELU(), | |
nn.BatchNorm1d(32), | |
nn.Dropout(0.3), | |
nn.Linear(32, 32), | |
nn.GELU(), | |
nn.Linear(32, 2) | |
) | |
def forward(self, x): | |
return self.network(x) | |
############################################################################### | |
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING | |
############################################################################### | |
def parse_fasta(text): | |
"""Parse FASTA formatted text into a list of (header, sequence).""" | |
sequences = [] | |
current_header = None | |
current_sequence = [] | |
for line in text.strip().split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('>'): | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
current_header = line[1:] | |
current_sequence = [] | |
else: | |
current_sequence.append(line.upper()) | |
if current_header: | |
sequences.append((current_header, ''.join(current_sequence))) | |
return sequences | |
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: | |
"""Convert a sequence to a k-mer frequency vector.""" | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
vec = np.zeros(len(kmers), dtype=np.float32) | |
for i in range(len(sequence) - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: | |
vec[kmer_dict[kmer]] += 1 | |
total_kmers = len(sequence) - k + 1 | |
if total_kmers > 0: | |
vec = vec / total_kmers | |
return vec | |
############################################################################### | |
# 3. SHAP-VALUE (ABLATION) CALCULATION | |
############################################################################### | |
def calculate_shap_values(model, x_tensor): | |
""" | |
Calculate SHAP values using a simple ablation approach. | |
Returns shap values and model prediction. | |
""" | |
model.eval() | |
with torch.no_grad(): | |
# Get baseline prediction | |
baseline_output = model(x_tensor) | |
baseline_probs = torch.softmax(baseline_output, dim=1) | |
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class | |
# Calculate impact of zeroing each feature | |
shap_values = [] | |
x_zeroed = x_tensor.clone() | |
for i in range(x_tensor.shape[1]): | |
original_value = x_zeroed[0, i].item() | |
x_zeroed[0, i] = 0.0 | |
output = model(x_zeroed) | |
probs = torch.softmax(output, dim=1) | |
prob = probs[0, 1].item() | |
impact = baseline_prob - prob | |
shap_values.append(impact) | |
x_zeroed[0, i] = original_value # restore | |
return np.array(shap_values), baseline_prob | |
############################################################################### | |
# 4. PER-BASE SHAP AGGREGATION | |
############################################################################### | |
def compute_positionwise_scores(sequence, shap_values, k=4): | |
""" | |
Returns an array of per-base SHAP contributions by averaging | |
the k-mer SHAP values of all k-mers covering that base. | |
""" | |
# Create the list of k-mers (in lexicographic order) | |
kmers = [''.join(p) for p in product("ACGT", repeat=k)] | |
kmer_dict = {km: i for i, km in enumerate(kmers)} | |
seq_len = len(sequence) | |
shap_sums = np.zeros(seq_len, dtype=np.float32) | |
coverage = np.zeros(seq_len, dtype=np.float32) | |
for i in range(seq_len - k + 1): | |
kmer = sequence[i:i+k] | |
if kmer in kmer_dict: | |
val = shap_values[kmer_dict[kmer]] | |
shap_sums[i : i + k] += val | |
coverage[i : i + k] += 1 | |
with np.errstate(divide='ignore', invalid='ignore'): | |
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0) | |
return shap_means | |
############################################################################### | |
# 5. HEATMAP PLOTS | |
############################################################################### | |
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap"): | |
""" | |
Plots a 1D heatmap of per-base SHAP contributions. | |
Negative = push toward Non-Human, Positive = push toward Human. | |
""" | |
heatmap_data = shap_means.reshape(1, -1) # shape (1, seq_len) | |
fig, ax = plt.subplots(figsize=(12, 2)) | |
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r') | |
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2) | |
cbar.set_label('SHAP Contribution') | |
ax.set_yticks([]) | |
ax.set_xlabel('Position in Sequence') | |
ax.set_title(title) | |
plt.tight_layout() | |
return fig | |
def get_top_signal_region(shap_means, window_size=500): | |
""" | |
Find the window of length `window_size` that has the highest | |
sum of absolute SHAP values. Returns (start_index, end_index). | |
""" | |
seq_len = len(shap_means) | |
if window_size >= seq_len: | |
return 0, seq_len # entire sequence if window too large | |
abs_values = np.abs(shap_means) | |
max_sum = -1 | |
max_start = 0 | |
# Slide a window over shap_means | |
current_sum = np.sum(abs_values[:window_size]) | |
max_sum = current_sum | |
for start in range(1, seq_len - window_size + 1): | |
# Remove the leftmost base, add the new rightmost base | |
current_sum = current_sum - abs_values[start-1] + abs_values[start + window_size - 1] | |
if current_sum > max_sum: | |
max_sum = current_sum | |
max_start = start | |
return max_start, max_start + window_size | |
def plot_zoomed_heatmap(shap_means, window_size=500, title="Zoomed SHAP Region"): | |
""" | |
Finds the region with the largest absolute SHAP sum in a fixed window, | |
then plots a 1D heatmap of just that sub-region. | |
""" | |
start, end = get_top_signal_region(shap_means, window_size) | |
sub_means = shap_means[start:end].reshape(1, -1) | |
fig, ax = plt.subplots(figsize=(12, 2)) | |
cax = ax.imshow(sub_means, aspect='auto', cmap='RdBu_r') | |
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2) | |
cbar.set_label('SHAP Contribution') | |
ax.set_yticks([]) | |
ax.set_xlabel(f'Position in Sequence (zoomed in {start} - {end})') | |
ax.set_title(title) | |
plt.tight_layout() | |
return fig | |
############################################################################### | |
# 6. OTHER PLOT: TOP-K K-MER BAR PLOT | |
############################################################################### | |
def create_importance_bar_plot(shap_values, kmers, top_k=10): | |
"""Create a bar plot of the most important k-mers.""" | |
plt.rcParams.update({'font.size': 10}) | |
fig = plt.figure(figsize=(10, 5)) | |
# Sort by absolute importance | |
indices = np.argsort(np.abs(shap_values))[-top_k:] | |
values = shap_values[indices] | |
features = [kmers[i] for i in indices] | |
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values] | |
plt.barh(range(len(values)), values, color=colors) | |
plt.yticks(range(len(values)), features) | |
plt.xlabel('SHAP value (impact on model output)') | |
plt.title(f'Top {top_k} Most Influential k-mers') | |
plt.gca().invert_yaxis() | |
return fig | |
############################################################################### | |
# 7. HELPER FUNCTION: FIG TO IMAGE | |
############################################################################### | |
def fig_to_image(fig): | |
"""Convert a Matplotlib figure to a PIL Image.""" | |
import io | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150) | |
buf.seek(0) | |
img = Image.open(buf) | |
plt.close(fig) | |
return img | |
############################################################################### | |
# 8. MAIN PREDICTION FUNCTION | |
############################################################################### | |
def predict(file_obj, top_kmers=10, fasta_text="", zoom_window=500): | |
"""Main prediction function for Gradio interface.""" | |
# Handle input | |
if fasta_text.strip(): | |
text = fasta_text.strip() | |
elif file_obj is not None: | |
try: | |
with open(file_obj, 'r') as f: | |
text = f.read() | |
except Exception as e: | |
return f"Error reading file: {str(e)}", None, None, None | |
else: | |
return "Please provide a FASTA sequence.", None, None, None | |
# Parse FASTA | |
sequences = parse_fasta(text) | |
if not sequences: | |
return "No valid FASTA sequences found.", None, None, None | |
header, seq = sequences[0] | |
# Load model and scaler | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
try: | |
model = VirusClassifier(256).to(device) | |
model.load_state_dict(torch.load('model.pt', map_location=device)) | |
scaler = joblib.load('scaler.pkl') | |
except Exception as e: | |
return f"Error loading model: {str(e)}", None, None, None | |
# Generate features | |
freq_vector = sequence_to_kmer_vector(seq) | |
scaled_vector = scaler.transform(freq_vector.reshape(1, -1)) | |
x_tensor = torch.FloatTensor(scaled_vector).to(device) | |
# Calculate SHAP values and get prediction | |
shap_values, prob_human = calculate_shap_values(model, x_tensor) | |
# Prediction text | |
results = [ | |
f"Sequence: {header}", | |
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin", | |
f"Confidence: {max(prob_human, 1 - prob_human):.3f}", | |
f"Human Probability: {prob_human:.3f}" | |
] | |
# Create k-mer list (4-mers in lexicographic order) | |
kmers = [''.join(p) for p in product("ACGT", repeat=4)] | |
# 1) Top-k k-mer bar plot | |
importance_fig = create_importance_bar_plot(shap_values, kmers, top_kmers) | |
importance_img = fig_to_image(importance_fig) | |
# 2) Full-genome per-base SHAP heatmap | |
shap_means = compute_positionwise_scores(seq, shap_values, k=4) | |
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide Per-base SHAP") | |
heatmap_img = fig_to_image(heatmap_fig) | |
# 3) Zoomed region (optional, using the largest absolute SHAP region) | |
if zoom_window > 0: | |
zoom_fig = plot_zoomed_heatmap(shap_means, window_size=zoom_window, | |
title=f"Top SHAP Region (window={zoom_window})") | |
zoom_img = fig_to_image(zoom_fig) | |
else: | |
zoom_img = None | |
return "\n".join(results), importance_img, heatmap_img, zoom_img | |
############################################################################### | |
# 9. BUILD GRADIO INTERFACE | |
############################################################################### | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
""" | |
with gr.Blocks(css=css) as iface: | |
gr.Markdown(""" | |
# Virus Host Classifier | |
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload FASTA file", | |
file_types=[".fasta", ".fa", ".txt"], | |
type="filepath" | |
) | |
text_input = gr.Textbox( | |
label="Or paste FASTA sequence", | |
placeholder=">sequence_name\nACGTACGT...", | |
lines=5 | |
) | |
top_k = gr.Slider( | |
minimum=5, | |
maximum=30, | |
value=10, | |
step=1, | |
label="Number of top k-mers to display" | |
) | |
zoom_window = gr.Slider( | |
minimum=0, | |
maximum=5000, | |
value=500, | |
step=100, | |
label="Zoom Window Size (0 to disable zoom plot)" | |
) | |
submit_btn = gr.Button("Analyze Sequence", variant="primary") | |
with gr.Column(scale=2): | |
results_box = gr.Textbox(label="Analysis Results", lines=5) | |
kmer_plot = gr.Image(label="Top k-mer SHAP") | |
full_heatmap = gr.Image(label="Genome-wide SHAP Heatmap") | |
zoomed_heatmap = gr.Image(label="Zoomed SHAP Region (largest signal)") | |
submit_btn.click( | |
predict, | |
inputs=[file_input, top_k, text_input, zoom_window], | |
outputs=[results_box, kmer_plot, full_heatmap, zoomed_heatmap] | |
) | |
gr.Markdown(""" | |
### Visualization Guide | |
- **Top k-mer SHAP**: Shows the most influential k-mers and their SHAP values. | |
- **Genome-wide SHAP Heatmap**: Per-base SHAP values across the entire sequence. | |
- Red = push toward human | |
- Blue = push toward non-human | |
- **Zoomed SHAP Region**: Shows the subregion of length 'Zoom Window Size' that has the highest absolute SHAP sum. | |
""") | |
if __name__ == "__main__": | |
iface.launch() | |