HostClassifier / app.py
hiyata's picture
Update app.py
d76e76a verified
raw
history blame
13.5 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap values and model prediction.
"""
model.eval()
with torch.no_grad():
# Get baseline prediction
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Calculate impact of zeroing each feature
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_value = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob
shap_values.append(impact)
x_zeroed[0, i] = original_value # restore
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
# Create the list of k-mers (in lexicographic order)
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i : i + k] += val
coverage[i : i + k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. HEATMAP PLOTS
###############################################################################
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap"):
"""
Plots a 1D heatmap of per-base SHAP contributions.
Negative = push toward Non-Human, Positive = push toward Human.
"""
heatmap_data = shap_means.reshape(1, -1) # shape (1, seq_len)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel('Position in Sequence')
ax.set_title(title)
plt.tight_layout()
return fig
def get_top_signal_region(shap_means, window_size=500):
"""
Find the window of length `window_size` that has the highest
sum of absolute SHAP values. Returns (start_index, end_index).
"""
seq_len = len(shap_means)
if window_size >= seq_len:
return 0, seq_len # entire sequence if window too large
abs_values = np.abs(shap_means)
max_sum = -1
max_start = 0
# Slide a window over shap_means
current_sum = np.sum(abs_values[:window_size])
max_sum = current_sum
for start in range(1, seq_len - window_size + 1):
# Remove the leftmost base, add the new rightmost base
current_sum = current_sum - abs_values[start-1] + abs_values[start + window_size - 1]
if current_sum > max_sum:
max_sum = current_sum
max_start = start
return max_start, max_start + window_size
def plot_zoomed_heatmap(shap_means, window_size=500, title="Zoomed SHAP Region"):
"""
Finds the region with the largest absolute SHAP sum in a fixed window,
then plots a 1D heatmap of just that sub-region.
"""
start, end = get_top_signal_region(shap_means, window_size)
sub_means = shap_means[start:end].reshape(1, -1)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(sub_means, aspect='auto', cmap='RdBu_r')
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel(f'Position in Sequence (zoomed in {start} - {end})')
ax.set_title(title)
plt.tight_layout()
return fig
###############################################################################
# 6. OTHER PLOT: TOP-K K-MER BAR PLOT
###############################################################################
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
return fig
###############################################################################
# 7. HELPER FUNCTION: FIG TO IMAGE
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image."""
import io
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
###############################################################################
# 8. MAIN PREDICTION FUNCTION
###############################################################################
def predict(file_obj, top_kmers=10, fasta_text="", zoom_window=500):
"""Main prediction function for Gradio interface."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}", None, None, None
else:
return "Please provide a FASTA sequence.", None, None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found.", None, None, None
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and get prediction
shap_values, prob_human = calculate_shap_values(model, x_tensor)
# Prediction text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
f"Human Probability: {prob_human:.3f}"
]
# Create k-mer list (4-mers in lexicographic order)
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
# 1) Top-k k-mer bar plot
importance_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
importance_img = fig_to_image(importance_fig)
# 2) Full-genome per-base SHAP heatmap
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide Per-base SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# 3) Zoomed region (optional, using the largest absolute SHAP region)
if zoom_window > 0:
zoom_fig = plot_zoomed_heatmap(shap_means, window_size=zoom_window,
title=f"Top SHAP Region (window={zoom_window})")
zoom_img = fig_to_image(zoom_fig)
else:
zoom_img = None
return "\n".join(results), importance_img, heatmap_img, zoom_img
###############################################################################
# 9. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
zoom_window = gr.Slider(
minimum=0,
maximum=5000,
value=500,
step=100,
label="Zoom Window Size (0 to disable zoom plot)"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(label="Analysis Results", lines=5)
kmer_plot = gr.Image(label="Top k-mer SHAP")
full_heatmap = gr.Image(label="Genome-wide SHAP Heatmap")
zoomed_heatmap = gr.Image(label="Zoomed SHAP Region (largest signal)")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input, zoom_window],
outputs=[results_box, kmer_plot, full_heatmap, zoomed_heatmap]
)
gr.Markdown("""
### Visualization Guide
- **Top k-mer SHAP**: Shows the most influential k-mers and their SHAP values.
- **Genome-wide SHAP Heatmap**: Per-base SHAP values across the entire sequence.
- Red = push toward human
- Blue = push toward non-human
- **Zoomed SHAP Region**: Shows the subregion of length 'Zoom Window Size' that has the highest absolute SHAP sum.
""")
if __name__ == "__main__":
iface.launch()