File size: 13,519 Bytes
5263bd3
 
 
 
f1d4be6
5263bd3
4a7c026
 
40fe6da
a6886ca
962ae70
 
 
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
962ae70
 
 
 
 
f1d4be6
7e92f7c
870813f
 
 
 
f1d4be6
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
a6886ca
7e92f7c
a6886ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ae70
 
 
 
 
ef80028
a6886ca
7e92f7c
 
a6886ca
f1d4be6
 
7e92f7c
ef80028
7e92f7c
962ae70
ef80028
7e92f7c
ef80028
7e92f7c
ef80028
d76e76a
962ae70
7e92f7c
 
 
d76e76a
7e92f7c
d76e76a
ef80028
a6886ca
962ae70
 
d76e76a
962ae70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76e76a
 
962ae70
 
 
 
 
 
 
d76e76a
 
 
 
 
 
962ae70
 
 
 
d76e76a
962ae70
 
 
d76e76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ae70
d76e76a
 
962ae70
 
 
d76e76a
 
 
962ae70
 
 
 
 
 
d76e76a
962ae70
 
7e92f7c
 
 
d76e76a
f1d4be6
ef80028
 
 
 
7e19501
7e92f7c
f1d4be6
ef80028
 
7e92f7c
ef80028
d76e76a
f1d4be6
 
962ae70
d76e76a
962ae70
 
 
 
d76e76a
962ae70
 
 
 
 
 
 
 
d76e76a
962ae70
 
d76e76a
7e92f7c
ef80028
f1d4be6
 
ef80028
f1d4be6
0681a74
 
f1d4be6
962ae70
ef80028
962ae70
f1d4be6
 
 
ef80028
962ae70
ef80028
f1d4be6
 
962ae70
ef80028
723da6d
ef80028
962ae70
a6886ca
b5edb58
962ae70
f1d4be6
ef80028
 
 
 
f1d4be6
7e92f7c
 
ef80028
962ae70
ef80028
 
7e92f7c
962ae70
d76e76a
ef80028
962ae70
d76e76a
7e92f7c
 
d76e76a
 
 
ef80028
d76e76a
962ae70
d76e76a
962ae70
 
d76e76a
 
 
 
 
 
 
 
 
962ae70
ef80028
962ae70
d76e76a
962ae70
ef80028
 
 
 
 
f1d4be6
 
ef80028
 
 
7e92f7c
ef80028
 
 
 
 
 
8f84058
7e92f7c
ef80028
 
 
 
 
 
 
 
7e92f7c
ef80028
 
 
 
d76e76a
 
 
 
 
 
 
ef80028
 
 
d76e76a
 
 
 
ef80028
 
 
d76e76a
 
ef80028
 
 
7e92f7c
d76e76a
 
962ae70
 
d76e76a
ef80028
0d2d632
723da6d
962ae70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image

###############################################################################
# 1. MODEL DEFINITION
###############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)


###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################

def parse_fasta(text):
    """Parse FASTA formatted text into a list of (header, sequence)."""
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert a sequence to a k-mer frequency vector."""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers

    return vec


###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################

def calculate_shap_values(model, x_tensor):
    """
    Calculate SHAP values using a simple ablation approach.
    Returns shap values and model prediction.
    """
    model.eval()
    with torch.no_grad():
        # Get baseline prediction
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()  # Probability of 'human' class
        
        # Calculate impact of zeroing each feature
        shap_values = []
        x_zeroed = x_tensor.clone()
        for i in range(x_tensor.shape[1]):
            original_value = x_zeroed[0, i].item()
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            prob = probs[0, 1].item()
            impact = baseline_prob - prob
            shap_values.append(impact)
            x_zeroed[0, i] = original_value  # restore
    return np.array(shap_values), baseline_prob


###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################

def compute_positionwise_scores(sequence, shap_values, k=4):
    """
    Returns an array of per-base SHAP contributions by averaging
    the k-mer SHAP values of all k-mers covering that base.
    """
    # Create the list of k-mers (in lexicographic order)
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            val = shap_values[kmer_dict[kmer]]
            shap_sums[i : i + k] += val
            coverage[i : i + k] += 1

    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
        
    return shap_means


###############################################################################
# 5. HEATMAP PLOTS
###############################################################################

def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap"):
    """
    Plots a 1D heatmap of per-base SHAP contributions.
    Negative = push toward Non-Human, Positive = push toward Human.
    """
    heatmap_data = shap_means.reshape(1, -1)  # shape (1, seq_len)
    fig, ax = plt.subplots(figsize=(12, 2))
    
    cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
    cbar.set_label('SHAP Contribution')

    ax.set_yticks([])
    ax.set_xlabel('Position in Sequence')
    ax.set_title(title)
    plt.tight_layout()
    return fig

def get_top_signal_region(shap_means, window_size=500):
    """
    Find the window of length `window_size` that has the highest
    sum of absolute SHAP values. Returns (start_index, end_index).
    """
    seq_len = len(shap_means)
    if window_size >= seq_len:
        return 0, seq_len  # entire sequence if window too large
    
    abs_values = np.abs(shap_means)
    max_sum = -1
    max_start = 0

    # Slide a window over shap_means
    current_sum = np.sum(abs_values[:window_size])
    max_sum = current_sum
    for start in range(1, seq_len - window_size + 1):
        # Remove the leftmost base, add the new rightmost base
        current_sum = current_sum - abs_values[start-1] + abs_values[start + window_size - 1]
        if current_sum > max_sum:
            max_sum = current_sum
            max_start = start
    
    return max_start, max_start + window_size

def plot_zoomed_heatmap(shap_means, window_size=500, title="Zoomed SHAP Region"):
    """
    Finds the region with the largest absolute SHAP sum in a fixed window,
    then plots a 1D heatmap of just that sub-region.
    """
    start, end = get_top_signal_region(shap_means, window_size)
    sub_means = shap_means[start:end].reshape(1, -1)
    
    fig, ax = plt.subplots(figsize=(12, 2))
    cax = ax.imshow(sub_means, aspect='auto', cmap='RdBu_r')
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
    cbar.set_label('SHAP Contribution')
    
    ax.set_yticks([])
    ax.set_xlabel(f'Position in Sequence (zoomed in {start} - {end})')
    ax.set_title(title)
    
    plt.tight_layout()
    return fig


###############################################################################
# 6. OTHER PLOT: TOP-K K-MER BAR PLOT
###############################################################################

def create_importance_bar_plot(shap_values, kmers, top_k=10):
    """Create a bar plot of the most important k-mers."""
    plt.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(10, 5))
    
    # Sort by absolute importance
    indices = np.argsort(np.abs(shap_values))[-top_k:]
    values = shap_values[indices]
    features = [kmers[i] for i in indices]
    
    colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
    
    plt.barh(range(len(values)), values, color=colors)
    plt.yticks(range(len(values)), features)
    plt.xlabel('SHAP value (impact on model output)')
    plt.title(f'Top {top_k} Most Influential k-mers')
    plt.gca().invert_yaxis()
    return fig

###############################################################################
# 7. HELPER FUNCTION: FIG TO IMAGE
###############################################################################

def fig_to_image(fig):
    """Convert a Matplotlib figure to a PIL Image."""
    import io
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    buf.seek(0)
    img = Image.open(buf)
    plt.close(fig)
    return img

###############################################################################
# 8. MAIN PREDICTION FUNCTION
###############################################################################

def predict(file_obj, top_kmers=10, fasta_text="", zoom_window=500):
    """Main prediction function for Gradio interface."""
    # Handle input
    if fasta_text.strip():
        text = fasta_text.strip()
    elif file_obj is not None:
        try:
            with open(file_obj, 'r') as f:
                text = f.read()
        except Exception as e:
            return f"Error reading file: {str(e)}", None, None, None
    else:
        return "Please provide a FASTA sequence.", None, None, None

    # Parse FASTA
    sequences = parse_fasta(text)
    if not sequences:
        return "No valid FASTA sequences found.", None, None, None
    
    header, seq = sequences[0]

    # Load model and scaler
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    try:
        model = VirusClassifier(256).to(device)
        model.load_state_dict(torch.load('model.pt', map_location=device))
        scaler = joblib.load('scaler.pkl')
    except Exception as e:
        return f"Error loading model: {str(e)}", None, None, None

    # Generate features
    freq_vector = sequence_to_kmer_vector(seq)
    scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
    x_tensor = torch.FloatTensor(scaled_vector).to(device)

    # Calculate SHAP values and get prediction
    shap_values, prob_human = calculate_shap_values(model, x_tensor)
    
    # Prediction text
    results = [
        f"Sequence: {header}",
        f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
        f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
        f"Human Probability: {prob_human:.3f}"
    ]
    
    # Create k-mer list (4-mers in lexicographic order)
    kmers = [''.join(p) for p in product("ACGT", repeat=4)]
    
    # 1) Top-k k-mer bar plot
    importance_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
    importance_img = fig_to_image(importance_fig)
    
    # 2) Full-genome per-base SHAP heatmap
    shap_means = compute_positionwise_scores(seq, shap_values, k=4)
    heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide Per-base SHAP")
    heatmap_img = fig_to_image(heatmap_fig)
    
    # 3) Zoomed region (optional, using the largest absolute SHAP region)
    if zoom_window > 0:
        zoom_fig = plot_zoomed_heatmap(shap_means, window_size=zoom_window,
                                       title=f"Top SHAP Region (window={zoom_window})")
        zoom_img = fig_to_image(zoom_fig)
    else:
        zoom_img = None
    
    return "\n".join(results), importance_img, heatmap_img, zoom_img


###############################################################################
# 9. BUILD GRADIO INTERFACE
###############################################################################

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("""
    # Virus Host Classifier
    Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                label="Upload FASTA file",
                file_types=[".fasta", ".fa", ".txt"],
                type="filepath"
            )
            text_input = gr.Textbox(
                label="Or paste FASTA sequence",
                placeholder=">sequence_name\nACGTACGT...",
                lines=5
            )
            top_k = gr.Slider(
                minimum=5,
                maximum=30,
                value=10,
                step=1,
                label="Number of top k-mers to display"
            )
            zoom_window = gr.Slider(
                minimum=0,
                maximum=5000,
                value=500,
                step=100,
                label="Zoom Window Size (0 to disable zoom plot)"
            )
            submit_btn = gr.Button("Analyze Sequence", variant="primary")
            
        with gr.Column(scale=2):
            results_box = gr.Textbox(label="Analysis Results", lines=5)
            kmer_plot = gr.Image(label="Top k-mer SHAP")
            full_heatmap = gr.Image(label="Genome-wide SHAP Heatmap")
            zoomed_heatmap = gr.Image(label="Zoomed SHAP Region (largest signal)")
    
    submit_btn.click(
        predict,
        inputs=[file_input, top_k, text_input, zoom_window],
        outputs=[results_box, kmer_plot, full_heatmap, zoomed_heatmap]
    )
    
    gr.Markdown("""
    ### Visualization Guide
    - **Top k-mer SHAP**: Shows the most influential k-mers and their SHAP values.
    - **Genome-wide SHAP Heatmap**: Per-base SHAP values across the entire sequence.
      - Red = push toward human
      - Blue = push toward non-human
    - **Zoomed SHAP Region**: Shows the subregion of length 'Zoom Window Size' that has the highest absolute SHAP sum.
    """)

if __name__ == "__main__":
    iface.launch()