Spaces:
Running
Running
File size: 13,519 Bytes
5263bd3 f1d4be6 5263bd3 4a7c026 40fe6da a6886ca 962ae70 5263bd3 b5edb58 962ae70 f1d4be6 7e92f7c 870813f f1d4be6 870813f a6886ca 7e92f7c a6886ca 962ae70 ef80028 a6886ca 7e92f7c a6886ca f1d4be6 7e92f7c ef80028 7e92f7c 962ae70 ef80028 7e92f7c ef80028 7e92f7c ef80028 d76e76a 962ae70 7e92f7c d76e76a 7e92f7c d76e76a ef80028 a6886ca 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 7e92f7c d76e76a f1d4be6 ef80028 7e19501 7e92f7c f1d4be6 ef80028 7e92f7c ef80028 d76e76a f1d4be6 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 d76e76a 7e92f7c ef80028 f1d4be6 ef80028 f1d4be6 0681a74 f1d4be6 962ae70 ef80028 962ae70 f1d4be6 ef80028 962ae70 ef80028 f1d4be6 962ae70 ef80028 723da6d ef80028 962ae70 a6886ca b5edb58 962ae70 f1d4be6 ef80028 f1d4be6 7e92f7c ef80028 962ae70 ef80028 7e92f7c 962ae70 d76e76a ef80028 962ae70 d76e76a 7e92f7c d76e76a ef80028 d76e76a 962ae70 d76e76a 962ae70 d76e76a 962ae70 ef80028 962ae70 d76e76a 962ae70 ef80028 f1d4be6 ef80028 7e92f7c ef80028 8f84058 7e92f7c ef80028 7e92f7c ef80028 d76e76a ef80028 d76e76a ef80028 d76e76a ef80028 7e92f7c d76e76a 962ae70 d76e76a ef80028 0d2d632 723da6d 962ae70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap values and model prediction.
"""
model.eval()
with torch.no_grad():
# Get baseline prediction
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Calculate impact of zeroing each feature
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_value = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob
shap_values.append(impact)
x_zeroed[0, i] = original_value # restore
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
# Create the list of k-mers (in lexicographic order)
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i : i + k] += val
coverage[i : i + k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. HEATMAP PLOTS
###############################################################################
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap"):
"""
Plots a 1D heatmap of per-base SHAP contributions.
Negative = push toward Non-Human, Positive = push toward Human.
"""
heatmap_data = shap_means.reshape(1, -1) # shape (1, seq_len)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel('Position in Sequence')
ax.set_title(title)
plt.tight_layout()
return fig
def get_top_signal_region(shap_means, window_size=500):
"""
Find the window of length `window_size` that has the highest
sum of absolute SHAP values. Returns (start_index, end_index).
"""
seq_len = len(shap_means)
if window_size >= seq_len:
return 0, seq_len # entire sequence if window too large
abs_values = np.abs(shap_means)
max_sum = -1
max_start = 0
# Slide a window over shap_means
current_sum = np.sum(abs_values[:window_size])
max_sum = current_sum
for start in range(1, seq_len - window_size + 1):
# Remove the leftmost base, add the new rightmost base
current_sum = current_sum - abs_values[start-1] + abs_values[start + window_size - 1]
if current_sum > max_sum:
max_sum = current_sum
max_start = start
return max_start, max_start + window_size
def plot_zoomed_heatmap(shap_means, window_size=500, title="Zoomed SHAP Region"):
"""
Finds the region with the largest absolute SHAP sum in a fixed window,
then plots a 1D heatmap of just that sub-region.
"""
start, end = get_top_signal_region(shap_means, window_size)
sub_means = shap_means[start:end].reshape(1, -1)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(sub_means, aspect='auto', cmap='RdBu_r')
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel(f'Position in Sequence (zoomed in {start} - {end})')
ax.set_title(title)
plt.tight_layout()
return fig
###############################################################################
# 6. OTHER PLOT: TOP-K K-MER BAR PLOT
###############################################################################
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
return fig
###############################################################################
# 7. HELPER FUNCTION: FIG TO IMAGE
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image."""
import io
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
###############################################################################
# 8. MAIN PREDICTION FUNCTION
###############################################################################
def predict(file_obj, top_kmers=10, fasta_text="", zoom_window=500):
"""Main prediction function for Gradio interface."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}", None, None, None
else:
return "Please provide a FASTA sequence.", None, None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found.", None, None, None
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and get prediction
shap_values, prob_human = calculate_shap_values(model, x_tensor)
# Prediction text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
f"Human Probability: {prob_human:.3f}"
]
# Create k-mer list (4-mers in lexicographic order)
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
# 1) Top-k k-mer bar plot
importance_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
importance_img = fig_to_image(importance_fig)
# 2) Full-genome per-base SHAP heatmap
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide Per-base SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# 3) Zoomed region (optional, using the largest absolute SHAP region)
if zoom_window > 0:
zoom_fig = plot_zoomed_heatmap(shap_means, window_size=zoom_window,
title=f"Top SHAP Region (window={zoom_window})")
zoom_img = fig_to_image(zoom_fig)
else:
zoom_img = None
return "\n".join(results), importance_img, heatmap_img, zoom_img
###############################################################################
# 9. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
zoom_window = gr.Slider(
minimum=0,
maximum=5000,
value=500,
step=100,
label="Zoom Window Size (0 to disable zoom plot)"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(label="Analysis Results", lines=5)
kmer_plot = gr.Image(label="Top k-mer SHAP")
full_heatmap = gr.Image(label="Genome-wide SHAP Heatmap")
zoomed_heatmap = gr.Image(label="Zoomed SHAP Region (largest signal)")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input, zoom_window],
outputs=[results_box, kmer_plot, full_heatmap, zoomed_heatmap]
)
gr.Markdown("""
### Visualization Guide
- **Top k-mer SHAP**: Shows the most influential k-mers and their SHAP values.
- **Genome-wide SHAP Heatmap**: Per-base SHAP values across the entire sequence.
- Red = push toward human
- Blue = push toward non-human
- **Zoomed SHAP Region**: Shows the subregion of length 'Zoom Window Size' that has the highest absolute SHAP sum.
""")
if __name__ == "__main__":
iface.launch()
|