howard-hou's picture
Update app.py
6fb11b4 verified
raw
history blame
7.58 kB
import os
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
# make sure cuda dir is in the same level as modeling_rwkv.py
from modeling_rwkv import RWKV
import gc
import gradio as gr
import base64
from io import BytesIO
from pathlib import Path
import torch
import torch.nn.functional as F
from datetime import datetime
from transformers import CLIPImageProcessor
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ctx_limit = 3500
title = 'ViusualRWKV-v6.0'
visualrwkv_remote_path = "VisualRWKV-v060-1B6-v1.0-20240612.pth"
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-6", filename=visualrwkv_remote_path)
# convert visualrwkv to RWKV and vision encoder #######################
output_dir = Path(model_path).parent
state_dict = torch.load(model_path, map_location="cpu")
rwkv_state_dict = {}
visual_state_dict = {}
for key in state_dict:
if key.startswith("rwkv"):
rwkv_state_dict[key[5:]] = state_dict[key].half()
else:
visual_state_dict[key] = state_dict[key].half()
# save
vision_local_path = output_dir / f"visual.pth"
rwkv_local_path = output_dir / f"rwkv.pth"
torch.save(rwkv_state_dict, rwkv_local_path)
torch.save(visual_state_dict, vision_local_path)
print("rwkv state dict has keys: ", len(rwkv_state_dict), "saved to ", rwkv_local_path)
print("visual state dict has keys: ", len(visual_state_dict), "saved to ", vision_local_path)
##########################################################################
vision_tower_name = 'openai/clip-vit-large-patch14-336'
model = RWKV(model=str(rwkv_local_path), strategy='cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
##########################################################################
from modeling_vision import VisionEncoder, VisionEncoderConfig
config = VisionEncoderConfig(n_embd=model.args.n_embd,
vision_tower_name=vision_tower_name,
grid_size=-1)
visual_encoder = VisionEncoder(config)
vision_state_dict = torch.load(vision_local_path, map_location='cpu')
visual_encoder.load_state_dict(vision_state_dict, strict=False)
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
visual_encoder = visual_encoder.to(device)
##########################################################################
def generate_prompt(instruction):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
return f"\n{instruction}\n\nAssistant:"
def generate(
ctx,
image_state,
token_count=200,
temperature=0.2,
top_p=0.3,
presencePenalty = 0.0,
countPenalty = 1.0,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0, 261]) # stop generation whenever you see any token here
ctx = ctx.strip()
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
for i in range(int(token_count)):
if i == 0:
input_ids = pipeline.encode(ctx)[-ctx_limit:]
out, state = model.forward(tokens=input_ids, state=image_state)
else:
input_ids = [token]
out, state = model.forward(tokens=input_ids, state=state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
##########################################################################
cur_dir = os.path.dirname(os.path.abspath(__file__))
examples = [
[
f"{cur_dir}/examples_pizza.jpg",
"What are steps to cook it?"
],
[
f"{cur_dir}/examples_bluejay.jpg",
"what is the name of this bird?",
],
[
f"{cur_dir}/examples_extreme_ironing.jpg",
"What is unusual about this image?",
],
[
f"{cur_dir}/examples_waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
]
def pil_image_to_base64(pil_image):
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.)
# Encodes the image data into base64 format as a bytes object
base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
return base64_image
image_cache = {}
ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
def compute_image_state(image):
base64_image = pil_image_to_base64(image)
if base64_image in image_cache:
image_state = image_cache[base64_image]
else:
image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
image = image.to(device)
image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
# apply layer norm to image feature, very important
image_features = F.layer_norm(image_features,
(image_features.shape[-1],),
weight=ln0_weight,
bias=ln0_bias)
_, image_state = model.forward(embs=image_features, state=None)
image_cache[base64_image] = image_state
return image_state
def chatbot(image, question):
if image is None:
yield "Please upload an image."
return
image_state = compute_image_state(image)
input_text = generate_prompt(question)
for output in generate(input_text, image_state):
yield output
with gr.Blocks(title=title) as demo:
with gr.Row():
with gr.Column():
image = gr.Image(type='pil', label="Image")
with gr.Column():
prompt = gr.Textbox(lines=8, label="Prompt",
value="Render a clear and concise summary of the photo.")
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
with gr.Column():
output = gr.Textbox(label="Output", lines=10)
data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"])
submit.click(chatbot, [image, prompt], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [image, prompt])
demo.launch(share=False)