Spaces:
Running
Running
File size: 9,794 Bytes
7cbdca2 e46dd10 7cbdca2 e8d5f8b 7cbdca2 ea2e234 7cbdca2 74a3076 21fe9a1 b8708f4 21fe9a1 b8708f4 7cbdca2 00981f2 7cbdca2 e8d5f8b 7cbdca2 e8d5f8b 7cbdca2 f9a20e8 e8d5f8b 7cbdca2 f9a20e8 7cbdca2 e8d5f8b f9a20e8 2405b89 00981f2 31de2a9 00981f2 2405b89 7cbdca2 74a3076 d929b06 7cbdca2 d929b06 7cbdca2 74a3076 e46dd10 d929b06 7cbdca2 3db022a 7cbdca2 3db022a 7cbdca2 3db022a 7cbdca2 21fe9a1 f81803d 7cbdca2 21fe9a1 7cbdca2 21fe9a1 7cbdca2 21fe9a1 7cbdca2 e8d5f8b 21fe9a1 7cbdca2 d929b06 3db022a d929b06 3db022a 7cbdca2 00981f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import math
import tempfile
from typing import Optional, Tuple, Union
import gradio
import gradio.inputs
import gradio.outputs
import markdown
import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from PIL import Image
from torch import Tensor
from torchaudio.backend.common import AudioMetaData
from df import config
from df.enhance import enhance, init_df, load_audio, save_audio
from df.io import resample
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
model = model.to(device=device).eval()
fig_noisy: plt.Figure
fig_enh: plt.Figure
ax_noisy: plt.Axes
ax_enh: plt.Axes
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4))
fig_noisy.set_tight_layout(True)
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4))
fig_enh.set_tight_layout(True)
NOISES = {
"None": None,
"Kitchen": "samples/dkitchen.wav",
"Living Room": "samples/dliving.wav",
"River": "samples/nriver.wav",
"Cafe": "samples/scafe.wav",
}
def mix_at_snr(clean, noise, snr, eps=1e-10):
"""Mix clean and noise signal at a given SNR.
Args:
clean: 1D Tensor with the clean signal to mix.
noise: 1D Tensor of shape.
snr: Signal to noise ratio.
Returns:
clean: 1D Tensor with gain changed according to the snr.
noise: 1D Tensor with the combined noise channels.
mix: 1D Tensor with added clean and noise signals.
"""
clean = torch.as_tensor(clean).mean(0, keepdim=True)
noise = torch.as_tensor(noise).mean(0, keepdim=True)
if noise.shape[1] < clean.shape[1]:
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1]))))
max_start = int(noise.shape[1] - clean.shape[1])
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0
logger.debug(f"start: {start}, {clean.shape}")
noise = noise[:, start : start + clean.shape[1]]
E_speech = torch.mean(clean.pow(2)) + eps
E_noise = torch.mean(noise.pow(2))
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
noise = noise / K
mixture = clean + noise
logger.debug("mixture: {mixture.shape}")
assert torch.isfinite(mixture).all()
max_m = mixture.abs().max()
if max_m > 1:
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}")
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m
return clean, noise, mixture
def load_audio_gradio(
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int
) -> Optional[Tuple[Tensor, AudioMetaData]]:
if audio_or_file is None:
return None
if isinstance(audio_or_file, str):
if audio_or_file.lower() == "none":
return None
# First try default format
audio, meta = load_audio(audio_or_file, sr)
else:
meta = AudioMetaData(-1, -1, -1, -1, "")
assert isinstance(audio_or_file, (tuple, list))
meta.sample_rate, audio_np = audio_or_file
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not.
audio_np = audio_np.reshape(audio_np.shape[0], -1).T
if audio_np.dtype == np.int16:
audio_np = (audio_np / (1 << 15)).astype(np.float32)
elif audio_np.dtype == np.int32:
audio_np = (audio_np / (1 << 31)).astype(np.float32)
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr)
return audio, meta
def demo_fn(speech_upl: str, noise_type: str, snr: int):
sr = config("sr", 48000, int, section="df")
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}")
snr = int(snr)
noise_fn = NOISES[noise_type]
meta = AudioMetaData(-1, -1, -1, -1, "")
max_s = 10 # limit to 10 seconds
if speech_upl is not None:
sample, meta = load_audio(speech_upl, sr)
max_len = max_s * sr
if sample.shape[-1] > max_len:
start = torch.randint(0, sample.shape[-1] - max_len, ()).item()
sample = sample[..., start : start + max_len]
else:
sample, meta = load_audio("samples/p232_013_clean.wav", sr)
sample = sample[..., : max_s * sr]
if sample.dim() > 1 and sample.shape[0] > 1:
assert (
sample.shape[1] > sample.shape[0]
), f"Expecting channels first, but got {sample.shape}"
sample = sample.mean(dim=0, keepdim=True)
logger.info(f"Loaded sample with shape {sample.shape}")
if noise_fn is not None:
noise, _ = load_audio(noise_fn, sr) # type: ignore
logger.info(f"Loaded noise with shape {noise.shape}")
_, _, sample = mix_at_snr(sample, noise, snr)
logger.info("Start denoising audio")
enhanced = enhance(model, df, sample)
logger.info("Denoising finished")
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
enhanced = enhanced * lim
if meta.sample_rate != sr:
enhanced = resample(enhanced, sr, meta.sample_rate)
sample = resample(sample, sr, meta.sample_rate)
sr = meta.sample_rate
noisy_wav = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
save_audio(noisy_fn, sample, sr)
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
save_audio(enhanced_fn, enhanced, sr)
logger.info(f"saved audios: {noisy_fn}, {enhanced_fn}")
ax_noisy.clear()
ax_enh.clear()
noisy_im = spec_im(sample, sr=sr, figure=fig_noisy, ax=ax_noisy)
enh_im = spec_im(enhanced, sr=sr, figure=fig_enh, ax=ax_enh)
# noisy_wav = gradio.make_waveform(noisy_fn, bar_count=200)
# enh_wav = gradio.make_waveform(enhanced_fn, bar_count=200)
return noisy_wav, noisy_im, enhanced_wav, enh_im
def specshow(
spec,
ax=None,
title=None,
xlabel=None,
ylabel=None,
sr=48000,
n_fft=None,
hop=None,
t=None,
f=None,
vmin=-100,
vmax=0,
xlim=None,
ylim=None,
cmap="inferno",
):
"""Plots a spectrogram of shape [F, T]"""
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec
if ax is not None:
set_title = ax.set_title
set_xlabel = ax.set_xlabel
set_ylabel = ax.set_ylabel
set_xlim = ax.set_xlim
set_ylim = ax.set_ylim
else:
ax = plt
set_title = plt.title
set_xlabel = plt.xlabel
set_ylabel = plt.ylabel
set_xlim = plt.xlim
set_ylim = plt.ylim
if n_fft is None:
if spec.shape[0] % 2 == 0:
n_fft = spec.shape[0] * 2
else:
n_fft = (spec.shape[0] - 1) * 2
hop = hop or n_fft // 4
if t is None:
t = np.arange(0, spec_np.shape[-1]) * hop / sr
if f is None:
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000
im = ax.pcolormesh(
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap
)
if title is not None:
set_title(title)
if xlabel is not None:
set_xlabel(xlabel)
if ylabel is not None:
set_ylabel(ylabel)
if xlim is not None:
set_xlim(xlim)
if ylim is not None:
set_ylim(ylim)
return im
def spec_im(
audio: torch.Tensor,
figsize=(15, 5),
colorbar=False,
colorbar_format=None,
figure=None,
labels=True,
**kwargs,
) -> Image:
audio = torch.as_tensor(audio)
if labels:
kwargs.setdefault("xlabel", "Time [s]")
kwargs.setdefault("ylabel", "Frequency [Hz]")
n_fft = kwargs.setdefault("n_fft", 1024)
hop = kwargs.setdefault("hop", 512)
w = torch.hann_window(n_fft, device=audio.device)
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False)
spec = spec.div_(w.pow(2).sum())
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10)
kwargs.setdefault("vmax", max(0.0, spec.max().item()))
if figure is None:
figure = plt.figure(figsize=figsize)
figure.set_tight_layout(True)
if spec.dim() > 2:
spec = spec.squeeze(0)
im = specshow(spec, **kwargs)
if colorbar:
ckwargs = {}
if "ax" in kwargs:
if colorbar_format is None:
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None:
colorbar_format = "%+2.0f dB"
ckwargs = {"ax": kwargs["ax"]}
plt.colorbar(im, format=colorbar_format, **ckwargs)
figure.canvas.draw()
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb())
inputs = [
gradio.Audio(
label="Upload audio sample",
source="upload",
type="filepath",
),
gradio.Dropdown(
label="Add background noise",
choices=list(NOISES.keys()),
value="None",
),
gradio.Dropdown(
label="Noise Level (SNR)",
choices=["-5", "0", "10", "20"],
value="10",
),
]
outputs = [
# gradio.Video(type="filepath", label="Noisy audio"),
gradio.Audio(type="filepath", label="Noisy audio"),
gradio.Image(label="Noisy spectrogram"),
# gradio.Video(type="filepath", label="Enhanced audio"),
gradio.Audio(type="filepath", label="Enhanced audio"),
gradio.Image(label="Enhanced spectrogram"),
]
description = "This demo denoises audio files using DeepFilterNet. Try it with your own voice!"
iface = gradio.Interface(
fn=demo_fn,
title="DeepFilterNet2 Demo",
inputs=inputs,
outputs=outputs,
description=description,
allow_flagging="never",
article=markdown.markdown(open("usage.md").read()),
)
iface.launch(debug=True)
|