InfiniteYou-FLUX / pipelines /pipeline_infu_flux.py
EndlessSora's picture
update demo & README.md
df5230f
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import random
from typing import Optional
import cv2
import numpy as np
import torch
from diffusers.models import FluxControlNetModel
from facexlib.recognition import init_recognition_model
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from .pipeline_flux_infusenet import FluxInfuseNetPipeline
from .resampler import Resampler
def seed_everything(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# modified from https://github.com/instantX-research/InstantID/blob/main/pipeline_stable_diffusion_xl_instantid.py
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def extract_arcface_bgr_embedding(in_image, landmark, arcface_model=None, in_settings=None):
kps = landmark
arc_face_image = face_align.norm_crop(in_image, landmark=np.array(kps), image_size=112)
arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0,3,1,2) / 255.
arc_face_image = 2 * arc_face_image - 1
arc_face_image = arc_face_image.cuda().contiguous()
if arcface_model is None:
arcface_model = init_recognition_model('arcface', device='cuda')
face_emb = arcface_model(arc_face_image)[0] # [512], normalized
return face_emb
def resize_and_pad_image(source_img, target_img_size):
# Get original and target sizes
source_img_size = source_img.size
target_width, target_height = target_img_size
# Determine the new size based on the shorter side of target_img
if target_width <= target_height:
new_width = target_width
new_height = int(target_width * (source_img_size[1] / source_img_size[0]))
else:
new_height = target_height
new_width = int(target_height * (source_img_size[0] / source_img_size[1]))
# Resize the source image using LANCZOS interpolation for high quality
resized_source_img = source_img.resize((new_width, new_height), Image.LANCZOS)
# Compute padding to center resized image
pad_left = (target_width - new_width) // 2
pad_top = (target_height - new_height) // 2
# Create a new image with white background
padded_img = Image.new("RGB", target_img_size, (255, 255, 255))
padded_img.paste(resized_source_img, (pad_left, pad_top))
return padded_img
class InfUFluxPipeline:
def __init__(
self,
base_model_path,
infu_model_path,
insightface_root_path = './',
image_proj_num_tokens=8,
infu_flux_version='v1.0',
model_version='aes_stage2',
):
self.infu_flux_version = infu_flux_version
self.model_version = model_version
# Load pipeline
try:
infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
except:
print("No InfiniteYou model found. Downloading from HuggingFace `ByteDance/InfiniteYou` to `./models/InfiniteYou` ...")
snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
infu_model_path = os.path.join('./models/InfiniteYou', f'infu_flux_{infu_flux_version}', model_version)
infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
insightface_root_path = './models/InfiniteYou/supports/insightface'
try:
pipe = FluxInfuseNetPipeline.from_pretrained(
base_model_path,
controlnet=self.infusenet,
torch_dtype=torch.bfloat16,
)
except:
try:
pipe = FluxInfuseNetPipeline.from_single_file(
base_model_path,
controlnet=self.infusenet,
torch_dtype=torch.bfloat16,
)
except Exception as e:
print(e)
print('\nIf you are using `black-forest-labs/FLUX.1-dev` and have not downloaded it into a local directory, '
'please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.')
print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.')
exit()
pipe.to('cuda', torch.bfloat16)
self.pipe = pipe
# Load image proj model
num_tokens = image_proj_num_tokens
image_emb_dim = 512
image_proj_model = Resampler(
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=num_tokens,
embedding_dim=image_emb_dim,
output_dim=4096,
ff_mult=4,
)
image_proj_model_path = os.path.join(infu_model_path, 'image_proj_model.bin')
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
del ipm_state_dict
image_proj_model.to('cuda', torch.bfloat16)
image_proj_model.eval()
self.image_proj_model = image_proj_model
# Load face encoder
self.app_640 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_640.prepare(ctx_id=0, det_size=(640, 640))
self.app_320 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_320.prepare(ctx_id=0, det_size=(320, 320))
self.app_160 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_160.prepare(ctx_id=0, det_size=(160, 160))
self.arcface_model = init_recognition_model('arcface', device='cuda')
def load_loras(self, loras):
names, scales = [],[]
for lora_path, lora_name, lora_scale in loras:
if lora_path != "":
print(f"loading lora {lora_path}")
self.pipe.load_lora_weights(lora_path, adapter_name = lora_name)
names.append(lora_name)
scales.append(lora_scale)
if len(names) > 0:
self.pipe.set_adapters(names, adapter_weights=scales)
def _detect_face(self, id_image_cv2):
face_info = self.app_640.get(id_image_cv2)
if len(face_info) > 0:
return face_info
face_info = self.app_320.get(id_image_cv2)
if len(face_info) > 0:
return face_info
face_info = self.app_160.get(id_image_cv2)
return face_info
def __call__(
self,
id_image: Image.Image, # PIL.Image.Image (RGB)
prompt: str,
control_image: Optional[Image.Image] = None, # PIL.Image.Image (RGB) or None
width = 864,
height = 1152,
seed = 42,
guidance_scale = 3.5,
num_steps = 30,
infusenet_conditioning_scale = 1.0,
infusenet_guidance_start = 0.0,
infusenet_guidance_end = 1.0,
):
# Extract ID embeddings
print('Preparing ID embeddings')
id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR)
face_info = self._detect_face(id_image_cv2)
if len(face_info) == 0:
raise ValueError('No face detected in the input ID image')
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
landmark = face_info['kps']
id_embed = extract_arcface_bgr_embedding(id_image_cv2, landmark, self.arcface_model)
id_embed = id_embed.clone().unsqueeze(0).float().cuda()
id_embed = id_embed.reshape([1, -1, 512])
id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
with torch.no_grad():
id_embed = self.image_proj_model(id_embed)
bs_embed, seq_len, _ = id_embed.shape
id_embed = id_embed.repeat(1, 1, 1)
id_embed = id_embed.view(bs_embed * 1, seq_len, -1)
id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
# Load control image
print('Preparing the control image')
if control_image is not None:
control_image = control_image.convert("RGB")
control_image = resize_and_pad_image(control_image, (width, height))
face_info = self._detect_face(cv2.cvtColor(np.array(control_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
raise ValueError('No face detected in the control image')
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
control_image = draw_kps(control_image, face_info['kps'])
else:
out_img = np.zeros([height, width, 3])
control_image = Image.fromarray(out_img.astype(np.uint8))
# Perform inference
print('Generating image')
seed_everything(seed)
image = self.pipe(
prompt=prompt,
controlnet_prompt_embeds=id_embed,
control_image=control_image,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
controlnet_guidance_scale=1.0,
controlnet_conditioning_scale=infusenet_conditioning_scale,
control_guidance_start=infusenet_guidance_start,
control_guidance_end=infusenet_guidance_end,
height=height,
width=width,
).images[0]
return image