File size: 12,974 Bytes
a01d550
 
 
80275c5
 
385ebea
723ae91
80275c5
 
df92eb1
80275c5
 
d967c00
c6e2641
eae1702
3ead889
a3e054f
 
76cbdff
 
 
 
 
 
a3e054f
23a84f2
42554ac
385ebea
 
 
b25bfc6
 
385ebea
 
80275c5
2029299
723ae91
76cbdff
69c42d0
 
e8bab5c
69c42d0
 
 
e8bab5c
 
69c42d0
 
 
 
 
 
42554ac
 
 
69c42d0
3ead889
 
 
 
 
 
8a92b0a
 
 
 
eae1702
3ead889
8a92b0a
23a84f2
80275c5
df92eb1
6bfad85
723ae91
 
 
6bfad85
 
 
 
 
 
 
 
 
 
df92eb1
6bfad85
723ae91
df92eb1
 
 
723ae91
df92eb1
 
 
723ae91
df92eb1
 
6bfad85
 
42554ac
 
 
 
 
 
69c42d0
42554ac
 
 
 
 
 
69c42d0
42554ac
 
 
 
69c42d0
 
42554ac
 
69c42d0
42554ac
 
 
 
da0f003
 
42554ac
69c42d0
42554ac
 
 
 
69c42d0
42554ac
 
 
 
 
 
69c42d0
42554ac
 
 
 
69c42d0
42554ac
69c42d0
80275c5
42554ac
 
 
 
 
80275c5
42554ac
 
69c42d0
 
 
 
42554ac
69c42d0
42554ac
 
 
 
 
 
 
 
 
69c42d0
 
 
42554ac
69c42d0
42554ac
 
 
69c42d0
 
 
42554ac
69c42d0
 
42554ac
80275c5
69c42d0
42554ac
69c42d0
42554ac
69c42d0
42554ac
 
 
 
 
 
 
 
 
da0f003
42554ac
 
 
 
 
 
 
 
da0f003
42554ac
 
 
 
 
 
 
 
 
69c42d0
3ead889
 
 
 
 
 
 
 
 
42554ac
 
80275c5
42554ac
80275c5
 
42554ac
76cbdff
b25bfc6
 
 
 
 
 
 
 
 
 
 
 
 
da0f003
b25bfc6
 
 
42554ac
 
 
 
 
 
 
76cbdff
42554ac
 
 
 
 
 
 
76cbdff
42554ac
76cbdff
42554ac
 
 
 
 
 
 
 
76cbdff
 
793d0f2
 
 
 
76cbdff
42554ac
76cbdff
42554ac
76cbdff
42554ac
76cbdff
42554ac
 
793d0f2
 
 
 
76cbdff
42554ac
76cbdff
 
 
 
42554ac
 
 
729aada
 
 
da0f003
42554ac
 
69c42d0
42554ac
 
 
 
 
80275c5
9a7687f
 
 
42554ac
9a7687f
 
42554ac
9a7687f
42554ac
723ae91
42554ac
 
 
 
 
 
76cbdff
42554ac
 
 
 
 
723ae91
b25bfc6
c902b64
42554ac
69c42d0
 
da0f003
 
 
 
42554ac
 
da0f003
42554ac
 
 
 
 
b25bfc6
9a7687f
 
42554ac
 
9a7687f
 
 
 
42554ac
9a7687f
42554ac
9a7687f
 
 
 
 
42554ac
9a7687f
42554ac
da0f003
 
 
42554ac
b25bfc6
da0f003
42554ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cbdff
42554ac
 
 
 
 
76cbdff
42554ac
da0f003
 
42554ac
 
 
 
 
 
76cbdff
42554ac
 
 
 
 
 
 
 
 
 
 
 
 
 
df92eb1
42554ac
76cbdff
df92eb1
 
42554ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""
"""

from collections import defaultdict
import json
import os
import re

from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_together import ChatTogether
from langchain_google_genai import ChatGoogleGenerativeAI
import streamlit as st

import utils_mod
import doc_format_mod
import guide_mod
import sidebar_mod
import usage_mod
import vectorstore_mod


st.set_page_config(layout="wide", page_title="LegisQA")
os.environ["LANGCHAIN_API_KEY"] = st.secrets["langchain_api_key"]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = st.secrets["langchain_project"]
os.environ["TOKENIZERS_PARALLELISM"] = "false"


SS = st.session_state
SEED = 292764
CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
SPONSOR_PARTIES = ["D", "R", "L", "I"]

OPENAI_CHAT_MODELS = {
    "gpt-4o-mini": {"cost": {"pmi": 0.15, "pmo": 0.60}},
    "gpt-4o": {"cost": {"pmi": 5.00, "pmo": 15.0}},
}
ANTHROPIC_CHAT_MODELS = {
    "claude-3-haiku-20240307": {"cost": {"pmi": 0.25, "pmo": 1.25}},
    "claude-3-5-sonnet-20240620": {"cost": {"pmi": 3.00, "pmo": 15.0}},
    "claude-3-opus-20240229": {"cost": {"pmi": 15.0, "pmo": 75.0}},
}
TOGETHER_CHAT_MODELS = {
    "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {"cost": {"pmi": 0.18, "pmo": 0.18}},
    "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
        "cost": {"pmi": 0.88, "pmo": 0.88}
    },
    "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {
        "cost": {"pmi": 5.00, "pmo": 5.00}
    },
}
GOOGLE_CHAT_MODELS = {
    "gemini-1.5-flash": {"cost": {"pmi": 0.0, "pmo": 0.0}},
    "gemini-1.5-pro": {"cost": {"pmi": 0.0, "pmo": 0.0}},
    "gemini-1.5-pro-exp-0801": {"cost": {"pmi": 0.0, "pmo": 0.0}},
}


PROVIDER_MODELS = {
    "OpenAI": OPENAI_CHAT_MODELS,
    "Anthropic": ANTHROPIC_CHAT_MODELS,
    "Together": TOGETHER_CHAT_MODELS,
    "Google": GOOGLE_CHAT_MODELS,
}


def render_example_queries():

    with st.expander("Example Queries"):
        st.write(
            """

```
What are the themes around artificial intelligence?
```

```
Write a well cited 3 paragraph essay on food insecurity.
```

```
Create a table summarizing major climate change ideas with columns legis_id, title, idea.
```

```
Write an action plan to keep social security solvent.
```

```
Suggest reforms that would benefit the Medicaid program.
```

        """
        )


def get_generative_config(key_prefix: str) -> dict:
    output = {}

    key = "provider"
    output[key] = st.selectbox(
        label=key, options=PROVIDER_MODELS.keys(), key=f"{key_prefix}|{key}"
    )

    key = "model_name"
    output[key] = st.selectbox(
        label=key,
        options=PROVIDER_MODELS[output["provider"]],
        key=f"{key_prefix}|{key}",
    )

    key = "temperature"
    output[key] = st.slider(
        key,
        min_value=0.0,
        max_value=2.0,
        value=0.0,
        key=f"{key_prefix}|{key}",
    )

    key = "max_output_tokens"
    output[key] = st.slider(
        key,
        min_value=1024,
        max_value=2048,
        key=f"{key_prefix}|{key}",
    )

    key = "top_p"
    output[key] = st.slider(
        key, min_value=0.0, max_value=1.0, value=0.9, key=f"{key_prefix}|{key}"
    )

    key = "should_escape_markdown"
    output[key] = st.checkbox(
        key,
        value=False,
        key=f"{key_prefix}|{key}",
    )

    key = "should_add_legis_urls"
    output[key] = st.checkbox(
        key,
        value=True,
        key=f"{key_prefix}|{key}",
    )

    return output


def get_retrieval_config(key_prefix: str) -> dict:
    output = {}

    key = "n_ret_docs"
    output[key] = st.slider(
        "Number of chunks to retrieve",
        min_value=1,
        max_value=32,
        value=8,
        key=f"{key_prefix}|{key}",
    )

    key = "filter_legis_id"
    output[key] = st.text_input("Bill ID (e.g. 118-s-2293)", key=f"{key_prefix}|{key}")

    key = "filter_bioguide_id"
    output[key] = st.text_input("Bioguide ID (e.g. R000595)", key=f"{key_prefix}|{key}")

    key = "filter_congress_nums"
    output[key] = st.multiselect(
        "Congress Numbers",
        CONGRESS_NUMBERS,
        default=CONGRESS_NUMBERS,
        key=f"{key_prefix}|{key}",
    )

    key = "filter_sponsor_parties"
    output[key] = st.multiselect(
        "Sponsor Party",
        SPONSOR_PARTIES,
        default=SPONSOR_PARTIES,
        key=f"{key_prefix}|{key}",
    )

    return output


def get_llm(gen_config: dict):

    match gen_config["provider"]:

        case "OpenAI":
            llm = ChatOpenAI(
                model=gen_config["model_name"],
                temperature=gen_config["temperature"],
                api_key=st.secrets["openai_api_key"],
                top_p=gen_config["top_p"],
                seed=SEED,
                max_tokens=gen_config["max_output_tokens"],
            )

        case "Anthropic":
            llm = ChatAnthropic(
                model_name=gen_config["model_name"],
                temperature=gen_config["temperature"],
                api_key=st.secrets["anthropic_api_key"],
                top_p=gen_config["top_p"],
                max_tokens_to_sample=gen_config["max_output_tokens"],
            )

        case "Together":
            llm = ChatTogether(
                model=gen_config["model_name"],
                temperature=gen_config["temperature"],
                max_tokens=gen_config["max_output_tokens"],
                top_p=gen_config["top_p"],
                seed=SEED,
                api_key=st.secrets["together_api_key"],
            )

        case "Google":
            llm = ChatGoogleGenerativeAI(
                model=gen_config["model_name"],
                temperature=gen_config["temperature"],
                api_key=st.secrets["google_api_key"],
                max_output_tokens=gen_config["max_output_tokens"],
                top_p=gen_config["top_p"],
            )
            
        case _:
            raise ValueError()

    return llm


def create_rag_chain(llm, retriever):
    QUERY_RAG_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. When citing legis_id, use the same format as the excerpts (e.g. "116-hr-125"). If you don't know how to respond, just tell the user.

---

Congressional Legislation Excerpts:

{context}

---

Query: {query}"""

    prompt = ChatPromptTemplate.from_messages(
        [
            ("human", QUERY_RAG_TEMPLATE),
        ]
    )

    rag_chain = (
        RunnableParallel(
            {
                "docs": retriever,
                "query": RunnablePassthrough(),
            }
        )
        .assign(context=lambda x: doc_format_mod.format_docs(x["docs"]))
        .assign(aimessage=prompt | llm)
    )

    return rag_chain


def process_query(gen_config: dict, ret_config: dict, query: str):
    vectorstore = vectorstore_mod.load_pinecone_vectorstore()
    llm = get_llm(gen_config)
    vs_filter = vectorstore_mod.get_vectorstore_filter(ret_config)
    retriever = vectorstore.as_retriever(
        search_kwargs={"k": ret_config["n_ret_docs"], "filter": vs_filter},
    )
    rag_chain = create_rag_chain(llm, retriever)
    response = rag_chain.invoke(query)
    return response


def render_response(
    response: dict,
    model_info: dict,
    provider: str,
    should_escape_markdown: bool,
    should_add_legis_urls: bool,
    tag: str | None = None,
):
    response_text = response["aimessage"].content
    if should_escape_markdown:
        response_text = utils_mod.escape_markdown(response_text)
    if should_add_legis_urls:
        response_text = utils_mod.replace_legis_ids_with_urls(response_text)

    with st.container(border=True):
        if tag is None:
            st.write("Response")
        else:
            st.write(f"Response ({tag})")
        st.info(response_text)

    usage_mod.display_api_usage(
        response["aimessage"].response_metadata, model_info, provider, tag=tag
    )
    doc_format_mod.render_retrieved_chunks(response["docs"], tag=tag)


def render_query_rag_tab():
    key_prefix = "query_rag"
    render_example_queries()

    with st.form(f"{key_prefix}|query_form"):
        query = st.text_area(
            "Enter a query that can be answered with congressional legislation:"
        )
        cols = st.columns(2)
        with cols[0]:
            query_submitted = st.form_submit_button("Submit")
        with cols[1]:
            status_placeholder = st.empty()

    col1, col2 = st.columns(2)
    with col1:
        with st.expander("Generative Config"):
            gen_config = get_generative_config(key_prefix)
    with col2:
        with st.expander("Retrieval Config"):
            ret_config = get_retrieval_config(key_prefix)

    rkey = f"{key_prefix}|response"
    if query_submitted:
        with status_placeholder:
            with st.spinner("generating response"):
                SS[rkey] = process_query(gen_config, ret_config, query)

    if response := SS.get(rkey):
        model_info = PROVIDER_MODELS[gen_config["provider"]][gen_config["model_name"]]
        render_response(
            response,
            model_info,
            gen_config["provider"],
            gen_config["should_escape_markdown"],
            gen_config["should_add_legis_urls"],
        )

        with st.expander("Debug"):
            st.write(response)


def render_query_rag_sbs_tab():
    base_key_prefix = "query_rag_sbs"

    with st.form(f"{base_key_prefix}|query_form"):
        query = st.text_area(
            "Enter a query that can be answered with congressional legislation:"
        )
        cols = st.columns(2)
        with cols[0]:
            query_submitted = st.form_submit_button("Submit")
        with cols[1]:
            status_placeholder = st.empty()

    grp1a, grp2a = st.columns(2)

    gen_configs = {}
    ret_configs = {}
    with grp1a:
        st.header("Group 1")
        key_prefix = f"{base_key_prefix}|grp1"
        with st.expander("Generative Config"):
            gen_configs["grp1"] = get_generative_config(key_prefix)
        with st.expander("Retrieval Config"):
            ret_configs["grp1"] = get_retrieval_config(key_prefix)

    with grp2a:
        st.header("Group 2")
        key_prefix = f"{base_key_prefix}|grp2"
        with st.expander("Generative Config"):
            gen_configs["grp2"] = get_generative_config(key_prefix)
        with st.expander("Retrieval Config"):
            ret_configs["grp2"] = get_retrieval_config(key_prefix)

    grp1b, grp2b = st.columns(2)
    sbs_cols = {"grp1": grp1b, "grp2": grp2b}
    grp_names = {"grp1": "Group 1", "grp2": "Group 2"}

    for post_key_prefix in ["grp1", "grp2"]:
        with sbs_cols[post_key_prefix]:
            key_prefix = f"{base_key_prefix}|{post_key_prefix}"
            rkey = f"{key_prefix}|response"
            if query_submitted:
                with status_placeholder:
                    with st.spinner(
                        "generating response for {}".format(grp_names[post_key_prefix])
                    ):
                        SS[rkey] = process_query(
                            gen_configs[post_key_prefix],
                            ret_configs[post_key_prefix],
                            query,
                        )

            if response := SS.get(rkey):
                model_info = PROVIDER_MODELS[gen_configs[post_key_prefix]["provider"]][
                    gen_configs[post_key_prefix]["model_name"]
                ]
                render_response(
                    response,
                    model_info,
                    gen_configs[post_key_prefix]["provider"],
                    gen_configs[post_key_prefix]["should_escape_markdown"],
                    gen_configs[post_key_prefix]["should_add_legis_urls"],
                    tag=grp_names[post_key_prefix],
                )


def main():

    st.title(":classical_building: LegisQA :classical_building:")
    st.header("Query Congressional Bills")

    with st.sidebar:
        sidebar_mod.render_sidebar()

    query_rag_tab, query_rag_sbs_tab, guide_tab = st.tabs(
        [
            "RAG",
            "RAG (side-by-side)",
            "Guide",
        ]
    )

    with query_rag_tab:
        render_query_rag_tab()

    with query_rag_sbs_tab:
        render_query_rag_sbs_tab()

    with guide_tab:
        guide_mod.render_guide()


if __name__ == "__main__":
    main()