Spaces:
Running
Running
File size: 23,577 Bytes
a01d550 80275c5 385ebea 723ae91 80275c5 b25bfc6 69c42d0 b25bfc6 80275c5 df92eb1 80275c5 723ae91 b25bfc6 249fca7 85952ea d967c00 c6e2641 eae1702 80275c5 a3e054f 80275c5 23a84f2 385ebea b25bfc6 385ebea 80275c5 2029299 723ae91 23a84f2 69c42d0 8a92b0a eae1702 8a92b0a 23a84f2 80275c5 1d2c336 23a84f2 1d2c336 80275c5 23a84f2 85952ea 385ebea 23a84f2 df92eb1 80275c5 6643da8 80275c5 6bfad85 729aada 6bfad85 95a2a69 729aada 80275c5 723ae91 80275c5 b25bfc6 80275c5 a01d550 b25bfc6 80275c5 69c42d0 723ae91 69c42d0 723ae91 df92eb1 723ae91 df92eb1 723ae91 729aada 723ae91 df92eb1 6bfad85 723ae91 6bfad85 df92eb1 6bfad85 723ae91 df92eb1 723ae91 df92eb1 723ae91 df92eb1 6bfad85 69c42d0 da0f003 69c42d0 80275c5 69c42d0 80275c5 69c42d0 80275c5 69c42d0 2029299 69c42d0 723ae91 69c42d0 da0f003 69c42d0 80275c5 b25bfc6 80275c5 da0f003 b25bfc6 da0f003 b25bfc6 729aada da0f003 69c42d0 723ae91 80275c5 9a7687f 723ae91 2029299 69c42d0 723ae91 69c42d0 723ae91 b25bfc6 6c729fe da0f003 69c42d0 723ae91 385ebea 69c42d0 723ae91 69c42d0 723ae91 69c42d0 723ae91 69c42d0 723ae91 c6e2641 69c42d0 723ae91 69c42d0 723ae91 df92eb1 723ae91 c902b64 69c42d0 da0f003 69c42d0 da0f003 69c42d0 da0f003 69c42d0 da0f003 69c42d0 da0f003 69c42d0 da0f003 69c42d0 da0f003 df92eb1 da0f003 b25bfc6 9a7687f da0f003 b25bfc6 da0f003 df92eb1 a01d550 df92eb1 69c42d0 729aada 69c42d0 df92eb1 b25bfc6 df92eb1 69c42d0 df92eb1 b25bfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
"""
"""
from collections import defaultdict
import json
import os
import re
from langchain.tools.retriever import create_retriever_tool
from langchain.agents import AgentExecutor
from langchain.agents import create_openai_tools_agent
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain_core.documents import Document
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.prompts import MessagesPlaceholder
from langchain_core.messages import AIMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableParallel
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_community.callbacks import get_openai_callback
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_together import ChatTogether
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
import streamlit as st
st.set_page_config(layout="wide", page_title="LegisQA")
os.environ["LANGCHAIN_API_KEY"] = st.secrets["langchain_api_key"]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = st.secrets["langchain_project"]
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state
SEED = 292764
CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
SPONSOR_PARTIES = ["D", "R", "L", "I"]
CONGRESS_GOV_TYPE_MAP = {
"hconres": "house-concurrent-resolution",
"hjres": "house-joint-resolution",
"hr": "house-bill",
"hres": "house-resolution",
"s": "senate-bill",
"sconres": "senate-concurrent-resolution",
"sjres": "senate-joint-resolution",
"sres": "senate-resolution",
}
OPENAI_CHAT_MODELS = {
"gpt-4o-mini": {"cost": {"pmi": 0.15, "pmo": 0.60}},
# "gpt-4o": {"cost": {"pmi": 5.00, "pmo": 15.0}},
}
ANTHROPIC_CHAT_MODELS = {
"claude-3-haiku-20240307": {"cost": {"pmi": 0.25, "pmo": 1.25}},
# "claude-3-5-sonnet-20240620": {"cost": {"pmi": 3.00, "pmo": 15.0}},
# "claude-3-opus-20240229": {"cost": {"pmi": 15.0, "pmo": 75.0}},
}
TOGETHER_CHAT_MODELS = {
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": {"cost": {"pmi": 0.18, "pmo": 0.18}},
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
"cost": {"pmi": 0.88, "pmo": 0.88}
},
# "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {"cost": {"pmi": 5.00, "pmo": 5.00}},
}
PROVIDER_MODELS = {
"OpenAI": OPENAI_CHAT_MODELS,
"Anthropic": ANTHROPIC_CHAT_MODELS,
"Together": TOGETHER_CHAT_MODELS,
}
def get_sponsor_url(bioguide_id: str) -> str:
return f"https://bioguide.congress.gov/search/bio/{bioguide_id}"
def get_congress_gov_url(congress_num: int, legis_type: str, legis_num: int) -> str:
lt = CONGRESS_GOV_TYPE_MAP[legis_type]
return f"https://www.congress.gov/bill/{int(congress_num)}th-congress/{lt}/{int(legis_num)}"
def load_bge_embeddings():
model_name = "BAAI/bge-small-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
emb_fn = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="Represent this question for searching relevant passages: ",
)
return emb_fn
def load_pinecone_vectorstore():
emb_fn = load_bge_embeddings()
vectorstore = PineconeVectorStore(
embedding=emb_fn,
text_key="text",
distance_strategy=DistanceStrategy.COSINE,
pinecone_api_key=st.secrets["pinecone_api_key"],
index_name=st.secrets["pinecone_index_name"],
)
return vectorstore
def render_outreach_links():
nomic_base_url = "https://atlas.nomic.ai/data/gabrielhyperdemocracy"
nomic_map_name = "us-congressional-legislation-s1024o256nomic-1"
nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
hf_url = "https://huggingface.co/hyperdemocracy"
pc_url = "https://www.pinecone.io/blog/serverless"
together_url = "https://www.together.ai/"
st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
st.subheader(f":hugging_face: Raw [huggingface datasets]({hf_url})")
st.subheader(f":evergreen_tree: Index [pinecone serverless]({pc_url})")
st.subheader(f":pancakes: Inference [together.ai]({together_url})")
def group_docs(docs) -> list[tuple[str, list[Document]]]:
doc_grps = defaultdict(list)
# create legis_id groups
for doc in docs:
doc_grps[doc.metadata["legis_id"]].append(doc)
# sort docs in each group by start index
for legis_id in doc_grps.keys():
doc_grps[legis_id] = sorted(
doc_grps[legis_id],
key=lambda x: x.metadata["start_index"],
)
# sort groups by number of docs
doc_grps = sorted(
tuple(doc_grps.items()),
key=lambda x: -len(x[1]),
)
return doc_grps
def format_docs(docs):
"""JSON grouped"""
doc_grps = group_docs(docs)
out = []
for legis_id, doc_grp in doc_grps:
dd = {
"legis_id": doc_grp[0].metadata["legis_id"],
"title": doc_grp[0].metadata["title"],
"introduced_date": doc_grp[0].metadata["introduced_date"],
"sponsor": doc_grp[0].metadata["sponsor_full_name"],
"snippets": [doc.page_content for doc in doc_grp],
}
out.append(dd)
return json.dumps(out, indent=4)
def escape_markdown(text):
MD_SPECIAL_CHARS = r"\`*_{}[]()#+-.!$"
for char in MD_SPECIAL_CHARS:
text = text.replace(char, "\\" + char)
return text
def get_vectorstore_filter(key_prefix: str):
vs_filter = {}
if SS[f"{key_prefix}|filter_legis_id"] != "":
vs_filter["legis_id"] = SS[f"{key_prefix}|filter_legis_id"]
if SS[f"{key_prefix}|filter_bioguide_id"] != "":
vs_filter["sponsor_bioguide_id"] = SS[f"{key_prefix}|filter_bioguide_id"]
vs_filter = {
**vs_filter,
"congress_num": {"$in": SS[f"{key_prefix}|filter_congress_nums"]},
}
vs_filter = {
**vs_filter,
"sponsor_party": {"$in": SS[f"{key_prefix}|filter_sponsor_parties"]},
}
return vs_filter
def render_doc_grp(legis_id: str, doc_grp: list[Document]):
first_doc = doc_grp[0]
congress_gov_url = get_congress_gov_url(
first_doc.metadata["congress_num"],
first_doc.metadata["legis_type"],
first_doc.metadata["legis_num"],
)
congress_gov_link = f"[congress.gov]({congress_gov_url})"
ref = "{} chunks from {}\n\n{}\n\n{}\n\n[{} ({}) ]({})".format(
len(doc_grp),
first_doc.metadata["legis_id"],
first_doc.metadata["title"],
congress_gov_link,
first_doc.metadata["sponsor_full_name"],
first_doc.metadata["sponsor_bioguide_id"],
get_sponsor_url(first_doc.metadata["sponsor_bioguide_id"]),
)
doc_contents = [
"[start_index={}] ".format(int(doc.metadata["start_index"])) + doc.page_content
for doc in doc_grp
]
with st.expander(ref):
st.write(escape_markdown("\n\n...\n\n".join(doc_contents)))
def legis_id_to_link(legis_id: str) -> str:
congress_num, legis_type, legis_num = legis_id.split("-")
return get_congress_gov_url(congress_num, legis_type, legis_num)
def legis_id_match_to_link(matchobj):
mstring = matchobj.string[matchobj.start() : matchobj.end()]
url = legis_id_to_link(mstring)
link = f"[{mstring}]({url})"
return link
def replace_legis_ids_with_urls(text):
pattern = "11[345678]-[a-z]+-\d{1,5}"
rtext = re.sub(pattern, legis_id_match_to_link, text)
return rtext
def render_guide():
st.write(
"""
When you send a query to LegisQA, it will attempt to retrieve relevant content from the past six congresses ([113th-118th](https://en.wikipedia.org/wiki/List_of_United_States_Congresses)) covering 2013 to the present, pass it to a [large language model (LLM)](https://en.wikipedia.org/wiki/Large_language_model), and generate a response. This technique is known as Retrieval Augmented Generation (RAG). You can read [an academic paper](https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html) or [a high level summary](https://research.ibm.com/blog/retrieval-augmented-generation-RAG) to get more details. Once the response is generated, the retrieved content will be available for inspection with links to the bills and sponsors.
## Disclaimer
This is a research project. The RAG technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around, find questions that work and find questions that fail. There is a small monthly budget dedicated to the OpenAI endpoints. Once that is used up each month, queries will no longer work.
## Config
Use the `Generative Config` to change LLM parameters.
Use the `Retrieval Config` to change the number of chunks retrieved from our congress corpus and to apply various filters to the content before it is retrieved (e.g. filter to a specific set of congresses). Use the `Prompt Config` to try out different document formatting and prompting strategies.
"""
)
def render_example_queries():
with st.expander("Example Queries"):
st.write(
"""
```
What are the themes around artificial intelligence?
```
```
Write a well cited 3 paragraph essay on food insecurity.
```
```
Create a table summarizing major climate change ideas with columns legis_id, title, idea.
```
```
Write an action plan to keep social security solvent.
```
```
Suggest reforms that would benefit the Medicaid program.
```
"""
)
def render_generative_config(key_prefix: str):
st.selectbox(
label="provider", options=PROVIDER_MODELS.keys(), key=f"{key_prefix}|provider"
)
st.selectbox(
label="model name",
options=PROVIDER_MODELS[SS[f"{key_prefix}|provider"]],
key=f"{key_prefix}|model_name",
)
st.slider(
"temperature",
min_value=0.0,
max_value=2.0,
value=0.01,
key=f"{key_prefix}|temperature",
)
st.slider(
"max_output_tokens",
min_value=1024,
max_value=2048,
key=f"{key_prefix}|max_output_tokens",
)
st.slider(
"top_p", min_value=0.0, max_value=1.0, value=0.9, key=f"{key_prefix}|top_p"
)
st.checkbox(
"escape markdown in answer", key=f"{key_prefix}|response_escape_markdown"
)
st.checkbox(
"add legis urls in answer",
value=True,
key=f"{key_prefix}|response_add_legis_urls",
)
def render_retrieval_config(key_prefix: str):
st.slider(
"Number of chunks to retrieve",
min_value=1,
max_value=32,
value=8,
key=f"{key_prefix}|n_ret_docs",
)
st.text_input("Bill ID (e.g. 118-s-2293)", key=f"{key_prefix}|filter_legis_id")
st.text_input("Bioguide ID (e.g. R000595)", key=f"{key_prefix}|filter_bioguide_id")
st.multiselect(
"Congress Numbers",
CONGRESS_NUMBERS,
default=CONGRESS_NUMBERS,
key=f"{key_prefix}|filter_congress_nums",
)
st.multiselect(
"Sponsor Party",
SPONSOR_PARTIES,
default=SPONSOR_PARTIES,
key=f"{key_prefix}|filter_sponsor_parties",
)
def get_llm(key_prefix: str):
if SS[f"{key_prefix}|model_name"] in OPENAI_CHAT_MODELS:
llm = ChatOpenAI(
model=SS[f"{key_prefix}|model_name"],
temperature=SS[f"{key_prefix}|temperature"],
api_key=st.secrets["openai_api_key"],
top_p=SS[f"{key_prefix}|top_p"],
seed=SEED,
max_tokens=SS[f"{key_prefix}|max_output_tokens"],
)
elif SS[f"{key_prefix}|model_name"] in ANTHROPIC_CHAT_MODELS:
llm = ChatAnthropic(
model_name=SS[f"{key_prefix}|model_name"],
temperature=SS[f"{key_prefix}|temperature"],
api_key=st.secrets["anthropic_api_key"],
top_p=SS[f"{key_prefix}|top_p"],
max_tokens_to_sample=SS[f"{key_prefix}|max_output_tokens"],
)
elif SS[f"{key_prefix}|model_name"] in TOGETHER_CHAT_MODELS:
llm = ChatTogether(
model=SS[f"{key_prefix}|model_name"],
temperature=SS[f"{key_prefix}|temperature"],
max_tokens=SS[f"{key_prefix}|max_output_tokens"],
top_p=SS[f"{key_prefix}|top_p"],
seed=SEED,
api_key=st.secrets["together_api_key"],
)
else:
raise ValueError()
return llm
def get_token_usage(key_prefix: str, metadata: dict):
if SS[f"{key_prefix}|model_name"] in OPENAI_CHAT_MODELS:
model_info = PROVIDER_MODELS["OpenAI"][SS[f"{key_prefix}|model_name"]]
return get_openai_token_usage(metadata, model_info)
elif SS[f"{key_prefix}|model_name"] in ANTHROPIC_CHAT_MODELS:
model_info = PROVIDER_MODELS["Anthropic"][SS[f"{key_prefix}|model_name"]]
return get_anthropic_token_usage(metadata, model_info)
elif SS[f"{key_prefix}|model_name"] in TOGETHER_CHAT_MODELS:
model_info = PROVIDER_MODELS["Together"][SS[f"{key_prefix}|model_name"]]
return get_together_token_usage(metadata, model_info)
else:
raise ValueError()
def get_openai_token_usage(metadata: dict, model_info: dict):
input_tokens = metadata["token_usage"]["prompt_tokens"]
output_tokens = metadata["token_usage"]["completion_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_anthropic_token_usage(metadata: dict, model_info: dict):
input_tokens = metadata["usage"]["input_tokens"]
output_tokens = metadata["usage"]["output_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_together_token_usage(metadata: dict, model_info: dict):
input_tokens = metadata["token_usage"]["prompt_tokens"]
output_tokens = metadata["token_usage"]["completion_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def render_sidebar():
with st.container(border=True):
render_outreach_links()
def render_query_rag_tab():
QUERY_RAG_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
---
Congressional Legislation Excerpts:
{context}
---
Query: {query}"""
prompt = ChatPromptTemplate.from_messages(
[
("human", QUERY_RAG_TEMPLATE),
]
)
key_prefix = "query_rag"
render_example_queries()
with st.form(f"{key_prefix}|query_form"):
st.text_area(
"Enter a query that can be answered with congressional legislation:",
key=f"{key_prefix}|query",
)
query_submitted = st.form_submit_button("Submit")
col1, col2 = st.columns(2)
with col1:
with st.expander("Generative Config"):
render_generative_config(key_prefix)
with col2:
with st.expander("Retrieval Config"):
render_retrieval_config(key_prefix)
if query_submitted:
llm = get_llm(key_prefix)
vs_filter = get_vectorstore_filter(key_prefix)
retriever = vectorstore.as_retriever(
search_kwargs={"k": SS[f"{key_prefix}|n_ret_docs"], "filter": vs_filter},
)
rag_chain = (
RunnableParallel(
{
"docs": retriever, # list of docs
"query": RunnablePassthrough(), # str
}
)
.assign(context=(lambda x: format_docs(x["docs"])))
.assign(output=prompt | llm)
)
SS[f"{key_prefix}|out"] = rag_chain.invoke(SS[f"{key_prefix}|query"])
if f"{key_prefix}|out" in SS:
out_display = SS[f"{key_prefix}|out"]["output"].content
if SS[f"{key_prefix}|response_escape_markdown"]:
out_display = escape_markdown(out_display)
if SS[f"{key_prefix}|response_add_legis_urls"]:
out_display = replace_legis_ids_with_urls(out_display)
with st.container(border=True):
st.write("Response")
st.info(out_display)
with st.container(border=True):
st.write("API Usage")
token_usage = get_token_usage(
key_prefix, SS[f"{key_prefix}|out"]["output"].response_metadata
)
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Input Tokens", token_usage["input_tokens"])
with col2:
st.metric("Output Tokens", token_usage["output_tokens"])
with col3:
st.metric("Cost", f"${token_usage['cost']:.4f}")
with st.expander("Response Metadata"):
st.warning(SS[f"{key_prefix}|out"]["output"].response_metadata)
with st.container(border=True):
doc_grps = group_docs(SS[f"{key_prefix}|out"]["docs"])
st.write(
"Retrieved Chunks (note that you may need to 'right click' on links in the expanders to follow them)"
)
for legis_id, doc_grp in doc_grps:
render_doc_grp(legis_id, doc_grp)
with st.expander("Debug"):
st.write(SS[f"{key_prefix}|out"])
def render_query_rag_sbs_tab():
QUERY_RAG_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
---
Congressional Legislation Excerpts:
{context}
---
Query: {query}"""
base_key_prefix = "query_rag_sbs"
prompt = ChatPromptTemplate.from_messages(
[
("human", QUERY_RAG_TEMPLATE),
]
)
with st.form(f"{base_key_prefix}|query_form"):
st.text_area(
"Enter a query that can be answered with congressional legislation:",
key=f"{base_key_prefix}|query",
)
query_submitted = st.form_submit_button("Submit")
grp1a, grp2a = st.columns(2)
with grp1a:
st.header("Group 1")
key_prefix = f"{base_key_prefix}|grp1"
with st.expander("Generative Config"):
render_generative_config(key_prefix)
with st.expander("Retrieval Config"):
render_retrieval_config(key_prefix)
with grp2a:
st.header("Group 2")
key_prefix = f"{base_key_prefix}|grp2"
with st.expander("Generative Config"):
render_generative_config(key_prefix)
with st.expander("Retrieval Config"):
render_retrieval_config(key_prefix)
grp1b, grp2b = st.columns(2)
sbs_cols = {"grp1": grp1b, "grp2": grp2b}
for post_key_prefix in ["grp1", "grp2"]:
key_prefix = f"{base_key_prefix}|{post_key_prefix}"
if query_submitted:
llm = get_llm(key_prefix)
vs_filter = get_vectorstore_filter(key_prefix)
retriever = vectorstore.as_retriever(
search_kwargs={
"k": SS[f"{key_prefix}|n_ret_docs"],
"filter": vs_filter,
},
)
rag_chain = (
RunnableParallel(
{
"docs": retriever, # list of docs
"query": RunnablePassthrough(), # str
}
)
.assign(context=(lambda x: format_docs(x["docs"])))
.assign(output=prompt | llm)
)
SS[f"{key_prefix}|out"] = rag_chain.invoke(SS[f"{base_key_prefix}|query"])
if f"{key_prefix}|out" in SS:
with sbs_cols[post_key_prefix]:
out_display = SS[f"{key_prefix}|out"]["output"].content
if SS[f"{key_prefix}|response_escape_markdown"]:
out_display = escape_markdown(out_display)
if SS[f"{key_prefix}|response_add_legis_urls"]:
out_display = replace_legis_ids_with_urls(out_display)
with st.container(border=True):
st.write("Response")
st.info(out_display)
with st.container(border=True):
st.write("API Usage")
token_usage = get_token_usage(
key_prefix, SS[f"{key_prefix}|out"]["output"].response_metadata
)
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Input Tokens", token_usage["input_tokens"])
with col2:
st.metric("Output Tokens", token_usage["output_tokens"])
with col3:
st.metric("Cost", f"${token_usage['cost']:.4f}")
with st.expander("Response Metadata"):
st.warning(SS[f"{key_prefix}|out"]["output"].response_metadata)
with st.container(border=True):
doc_grps = group_docs(SS[f"{key_prefix}|out"]["docs"])
st.write(
"Retrieved Chunks (note that you may need to 'right click' on links in the expanders to follow them)"
)
for legis_id, doc_grp in doc_grps:
render_doc_grp(legis_id, doc_grp)
##################
st.title(":classical_building: LegisQA :classical_building:")
st.header("Chat With Congressional Bills")
with st.sidebar:
render_sidebar()
vectorstore = load_pinecone_vectorstore()
query_rag_tab, query_rag_sbs_tab, guide_tab = st.tabs(
[
"RAG",
"RAG (side-by-side)",
"Guide",
]
)
with query_rag_tab:
render_query_rag_tab()
with query_rag_sbs_tab:
render_query_rag_sbs_tab()
with guide_tab:
render_guide()
|