Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,378 Bytes
15d234b 4fd7fe3 15d234b 4fd7fe3 15d234b 4fd7fe3 15d234b 4fd7fe3 92aaea0 45eb86f fad8f4c 45eb86f 92aaea0 45eb86f 92aaea0 4fd7fe3 15d234b 4fd7fe3 92aaea0 45eb86f fad8f4c 4fd7fe3 92aaea0 4fd7fe3 15d234b 4fd7fe3 45eb86f 92aaea0 fad8f4c 45eb86f 4fd7fe3 15d234b 4fd7fe3 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f 15d234b 45eb86f 15d234b 45eb86f 15d234b 45eb86f 15d234b 4fd7fe3 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f 15d234b 4fd7fe3 15d234b 4fd7fe3 45eb86f 15d234b 45eb86f 15d234b 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f 4fd7fe3 15d234b 4fd7fe3 cd4d606 45eb86f 15d234b 4fd7fe3 15d234b 45eb86f cd4d606 45eb86f cd4d606 45eb86f fad8f4c 45eb86f 4fd7fe3 45eb86f fad8f4c 45eb86f 4fd7fe3 45eb86f 4fd7fe3 45eb86f fad8f4c 45eb86f fad8f4c 942bdcb 4fd7fe3 15d234b 4fd7fe3 92aaea0 45eb86f fad8f4c 45eb86f fad8f4c 92aaea0 45eb86f fad8f4c 45eb86f 92aaea0 4fd7fe3 15d234b 4fd7fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# app.py — InstantID × Beautiful Realistic Asians v7(ZeroGPU 対応・CrucibleAI ControlNet)
# 2025-06-22
##############################################################################
# 0. 旧 API → 新 API 互換パッチ(必ず diffusers import の前に置く)
##############################################################################
from huggingface_hub import hf_hub_download
import huggingface_hub as _hf_hub
# diffusers-0.27 が参照する cached_download() を v0.28+ でも使えるように注入
if not hasattr(_hf_hub, "cached_download"):
_hf_hub.cached_download = hf_hub_download
##############################################################################
# 1. 標準 & 外部ライブラリ
##############################################################################
import os, io, base64, subprocess, traceback
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import gradio as gr
import spaces
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from PIL import Image
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
AutoencoderKL,
)
from diffusers.loaders import AttnProcsLayers
from insightface.app import FaceAnalysis
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
##############################################################################
# 2. キャッシュ & パス
##############################################################################
PERSIST_BASE = Path("/data")
CACHE_ROOT = (
PERSIST_BASE / "instantid_cache"
if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
else Path.home() / ".cache" / "instantid_cache"
)
MODELS_DIR = CACHE_ROOT / "models"
LORA_DIR = CACHE_ROOT / "lora"
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
for _p in (MODELS_DIR, LORA_DIR, UPSCALE_DIR):
_p.mkdir(parents=True, exist_ok=True)
##############################################################################
# 3. モデル URL 一覧
##############################################################################
BRA_V7_URL = (
"https://huggingface.co/i0switch-assets/Beautiful_Realistic_Asians_v7/"
"resolve/main/beautiful_realistic_asians_v7_fp16.safetensors"
)
IP_ADAPTER_BIN_URL = (
"https://huggingface.co/h94/IP-Adapter/"
"resolve/main/ip-adapter-plus-face_sd15.bin"
)
IP_ADAPTER_LORA_URL = (
"https://huggingface.co/h94/IP-Adapter-FaceID/"
"resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors"
)
REALESRGAN_URL = (
"https://huggingface.co/aimagelab/realesrgan/"
"resolve/main/RealESRGAN_x4plus.pth"
)
##############################################################################
# 4. ダウンローダ
##############################################################################
def download(url: str, dst: Path, attempts: int = 2):
if dst.exists():
return dst
for i in range(1, attempts + 1):
try:
subprocess.check_call(["curl", "-L", "-o", str(dst), url])
return dst
except subprocess.CalledProcessError:
print(f"[DL] Retry {i}/{attempts} failed: {url}")
load_file_from_url(url=url, model_dir=str(dst.parent), file_name=dst.name)
return dst
##############################################################################
# 5. グローバル変数(lazy-load)
##############################################################################
pipe: Optional[StableDiffusionControlNetPipeline] = None
face_analyser: Optional[FaceAnalysis] = None
upsampler: Optional[RealESRGANer] = None
##############################################################################
# 6. パイプライン初期化
##############################################################################
def initialize_pipelines():
global pipe, face_analyser, upsampler
if pipe is not None:
return
print("[INIT] Downloading model assets …")
# 6-1 ベースモデル & IP-Adapter
bra_ckpt = download(BRA_V7_URL, MODELS_DIR / "bra_v7.safetensors")
ip_bin = download(IP_ADAPTER_BIN_URL, MODELS_DIR / "ip_adapter.bin")
ip_lora = download(IP_ADAPTER_LORA_URL, LORA_DIR / "ip_adapter_faceid.lora")
# 6-2 ControlNet(CrucibleAI / diffusion_sd15)
controlnet = ControlNetModel.from_pretrained(
"CrucibleAI/ControlNetMediaPipeFace", # ← 公開リポジトリ :contentReference[oaicite:0]{index=0}
subfolder="diffusion_sd15", # ← SD-1.5 用フォルダ :contentReference[oaicite:1]{index=1}
torch_dtype=torch.float16,
cache_dir=str(MODELS_DIR),
)
# 6-3 Diffusers パイプライン
pipe_tmp = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
vae=AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16
),
torch_dtype=torch.float16,
cache_dir=str(MODELS_DIR),
safety_checker=None,
)
pipe_tmp.scheduler = DPMSolverMultistepScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="scheduler",
cache_dir=str(MODELS_DIR),
)
# IP-Adapter
pipe_tmp.load_ip_adapter(ip_bin)
AttnProcsLayers(pipe_tmp.unet.attn_processors).load_lora_weights(
ip_lora, adapter_name="ip_faceid", safe_load=True
)
pipe_tmp.set_adapters(["ip_faceid"], adapter_weights=[0.6])
pipe_tmp.to("cuda")
pipe = pipe_tmp
# 6-4 InsightFace
face_analyser = FaceAnalysis(
name="buffalo_l", root=str(MODELS_DIR), providers=["CUDAExecutionProvider"]
)
face_analyser.prepare(ctx_id=0, det_size=(640, 640))
# 6-5 Real-ESRGAN
esrgan_ckpt = download(REALESRGAN_URL, UPSCALE_DIR / "realesrgan_x4plus.pth")
upsampler = RealESRGANer(
scale=4,
model_path=str(esrgan_ckpt),
half=True,
tile=512,
tile_pad=10,
pre_pad=0,
gpu_id=0,
)
print("[INIT] Pipelines ready.")
##############################################################################
# 7. プロンプトテンプレ
##############################################################################
BASE_PROMPT = (
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k, "
"cinematic lighting, textured skin, "
)
NEG_PROMPT = (
"verybadimagenegative_v1.3, ng_deepnegative_v1_75t, "
"(worst quality:2), (low quality:2), lowres, blurry, bad anatomy, "
"bad hands, extra digits, watermark, signature"
)
##############################################################################
# 8. 生成関数(GPU アタッチ)
##############################################################################
@spaces.GPU(duration=60)
def generate_core(
face_img: Image.Image,
subject: str,
add_prompt: str = "",
add_neg: str = "",
cfg: float = 7.5,
ip_scale: float = 0.6,
steps: int = 30,
w: int = 768,
h: int = 768,
upscale: bool = False,
up_factor: int = 4,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
try:
if pipe is None:
initialize_pipelines()
faces = face_analyser.get(np.array(face_img))
if len(faces) == 0:
raise ValueError("顔が検出できませんでした。別の画像をお試しください。")
pipe.set_adapters(["ip_faceid"], adapter_weights=[ip_scale])
prompt = BASE_PROMPT + subject + ", " + add_prompt
negative = NEG_PROMPT + ", " + add_neg
result = pipe(
prompt=prompt,
negative_prompt=negative,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
image=face_img,
control_image=None,
width=int(w),
height=int(h),
).images[0]
if upscale and upsampler is not None:
upsampler.scale = 4 if up_factor == 4 else 8
result, _ = upsampler.enhance(np.array(result))
result = Image.fromarray(result)
return result
except Exception as e:
traceback.print_exc()
raise e
##############################################################################
# 9. Gradio UI
##############################################################################
with gr.Blocks(title="InstantID × BRA v7 (ZeroGPU)") as demo:
gr.Markdown("## InstantID × Beautiful Realistic Asians v7")
with gr.Row():
face_img = gr.Image(type="pil", label="Face ID", sources=["upload"])
subject = gr.Textbox(
label="被写体説明(例: 30代日本人女性、黒髪セミロング)", interactive=True
)
add_prompt = gr.Textbox(label="追加プロンプト", interactive=True)
add_neg = gr.Textbox(label="追加ネガティブ", interactive=True)
with gr.Row():
cfg = gr.Slider(1, 20, value=7.5, step=0.5, label="CFG Scale")
ip_scale = gr.Slider(0.1, 1.0, value=0.6, step=0.05, label="IP-Adapter Weight")
with gr.Row():
steps = gr.Slider(10, 50, value=30, step=1, label="Steps")
w = gr.Slider(512, 1024, value=768, step=64, label="Width")
h = gr.Slider(512, 1024, value=768, step=64, label="Height")
with gr.Row():
upscale = gr.Checkbox(label="Real-ESRGAN Upscale", value=False)
up_factor = gr.Radio([4, 8], value=4, label="Upscale Factor")
run_btn = gr.Button("Generate")
output_img = gr.Image(type="pil", label="Result")
run_btn.click(
fn=generate_core,
inputs=[
face_img,
subject,
add_prompt,
add_neg,
cfg,
ip_scale,
steps,
w,
h,
upscale,
up_factor,
],
outputs=output_img,
show_progress=True,
)
##############################################################################
# 10. FastAPI REST
##############################################################################
app = FastAPI()
@app.post("/api/generate")
async def api_generate(
subject: str = Form(...),
cfg: float = Form(7.5),
steps: int = Form(30),
ip_scale: float = Form(0.6),
w: int = Form(768),
h: int = Form(768),
file: UploadFile = File(...),
):
try:
img_bytes = await file.read()
pil = Image.open(io.BytesIO(img_bytes)).convert("RGB")
res = generate_core(
face_img=pil,
subject=subject,
add_prompt="",
add_neg="",
cfg=cfg,
ip_scale=ip_scale,
steps=steps,
w=w,
h=h,
upscale=False,
up_factor=4,
)
buf = io.BytesIO()
res.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
return {"image": f"data:image/png;base64,{b64}"}
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
##############################################################################
# 11. Launch(Gradio が自動で Uvicorn を起動)
##############################################################################
demo.queue(default_concurrency_limit=2).launch(share=False)
|