Spaces:
Sleeping
Sleeping
File size: 10,447 Bytes
072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e 5577555 072143e ca7509e 5577555 ca7509e 072143e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import cv2
import mediapipe as mp
import numpy as np
# Load the correct and incorrect posture images as BGR colors
correct = cv2.imread('right.png')
correct = cv2.cvtColor(correct, cv2.COLOR_BGR2RGB)
incorrect = cv2.imread('wrong.png')
incorrect = cv2.cvtColor(incorrect, cv2.COLOR_BGR2RGB)
def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
"""
This function draws a rectangle with rounded corners on an image.
Args:
img: The image to draw on.
rect_start: The top-left corner of the rectangle as a tuple (x1, y1).
rect_end: The bottom-right corner of the rectangle as a tuple (x2, y2).
corner_width: The width of the rounded corners.
box_color: The color of the rectangle in BGR format.
"""
x1, y1 = rect_start
x2, y2 = rect_end
w = corner_width
# Draw filled rectangles for each side of the box
cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)
# Draw filled ellipses for the corners
cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)
cv2.ellipse(img, (x2 - w, y1 + w), (w, w),
angle = 0, startAngle = 0, endAngle = -90, color = box_color, thickness = -1)
cv2.ellipse(img, (x1 + w, y2 - w), (w, w),
angle = 0, startAngle = 90, endAngle = 180, color = box_color, thickness = -1)
cv2.ellipse(img, (x2 - w, y2 - w), (w, w),
angle = 0, startAngle = 0, endAngle = 90, color = box_color, thickness = -1)
return img
def draw_dotted_line(frame, lm_coord, start, end, line_color):
"""
This function draws a dotted line on a frame based on landmark coordinates.
Args:
frame: The image to draw on.
lm_coord: The landmark coordinates as a NumPy array.
start: The index of the starting landmark in the lm_coord array.
end: The index of the ending landmark in the lm_coord array.
line_color: The color of the line in BGR format.
"""
pix_step = 0
# Draw circles at every 8th element between the start and end landmarks
for i in range(start, end+1, 8):
cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)
return frame
def draw_text(
img,
msg,
width = 7,
font=cv2.FONT_HERSHEY_SIMPLEX,
pos=(0, 0),
font_scale=1,
font_thickness=2,
text_color=(0, 255, 0),
text_color_bg=(0, 0, 0),
box_offset=(20, 10),
overlay_image = False,
overlay_type = None
):
"""
This function draws text with a customizable background box on an image.
Args:
img: The image to draw on.
msg: The message to display as a string.
width: The thickness of the background box border (default: 7).
font: The font style for the text (default: cv2.FONT_HERSHEY_SIMPLEX).
pos: The top-left corner coordinates of the text box (default: (0, 0)).
font_scale: The scaling factor for the font size (default: 1).
font_thickness: The thickness of the text (default: 2).
text_color: The color of the text in BGR format (default: green - (0, 255, 0)).
text_color_bg: The color of the background box in BGR format (default: black - (0, 0, 0)).
box_offset: The offset for the background box relative to the text (default: (20, 10)).
overlay_image: Flag to display an overlay image inside the box (default: False).
overlay_type: Type of overlay image ("correct" or "incorrect") - used when overlay_image is True.
Returns:
The size of the drawn text (width, height) as a NumPy array.
"""
offset = box_offset
x, y = pos
# Get the size of the text with the specified font and scale
text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
text_w, text_h = text_size
# Calculate the top-left and bottom-right corners of the text box with padding
rec_start = tuple(p - o for p, o in zip(pos, offset))
rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))
resize_height = 0
# Handle overlay image logic
if overlay_image:
resize_height = rec_end[1] - rec_start[1]
# Draw a rounded rectangle box with the background color
img = draw_rounded_rect(img, rec_start, (rec_end[0]+resize_height, rec_end[1]), width, text_color_bg)
# Resize the overlay image based on the box height
if overlay_type == "correct":
overlay_res = cv2.resize(correct, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
elif overlay_type == "incorrect":
overlay_res = cv2.resize(incorrect, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
# Overlay the resized image onto the background box
img[rec_start[1]:rec_start[1]+resize_height, rec_start[0]+width:rec_start[0]+width+resize_height] = overlay_res
else:
img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)
# Draw the text onto the image with specified parameters
cv2.putText(
img,
msg,
(int(rec_start[0]+resize_height + 8), int(y + text_h + font_scale - 1)),
font,
font_scale,
text_color,
font_thickness,
cv2.LINE_AA,
)
return text_size
def find_angle(p1, p2, ref_pt = np.array([0,0])):
"""
This function calculates the angle between two points relative to a reference point.
Args:
p1: The first point coordinates as a NumPy array (x, y).
p2: The second point coordinates as a NumPy array (x, y).
ref_pt: The reference point coordinates as a NumPy array (default: [0, 0]).
Returns:
The angle between the two points in degrees (int).
"""
# Subtract the reference point from both points for normalization
p1_ref = p1 - ref_pt
p2_ref = p2 - ref_pt
# Calculate the cosine of the angle using the dot product
cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
# Clip the cosine value to avoid potential errors
theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
# Convert the angle from radians to degrees and cast to integer
degree = int(180 / np.pi) * theta
return int(degree)
def get_landmark_array(pose_landmark, key, frame_width, frame_height):
"""
This function extracts the normalized image coordinates for a landmark.
Args:
pose_landmark: A MediaPipe pose landmark object.
key: The key name of the landmark to extract (e.g., 'nose', 'shoulder.x').
frame_width: The width of the image frame.
frame_height: The height of the image frame.
Returns:
A NumPy array containing the normalized x and y coordinates of the landmark.
"""
denorm_x = int(pose_landmark[key].x * frame_width)
denorm_y = int(pose_landmark[key].y * frame_height)
return np.array([denorm_x, denorm_y])
def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):
"""
This function extracts landmark coordinates for various body parts based on a feature name.
Args:
kp_results: The MediaPipe pose landmark results object.
dict_features: A dictionary containing landmark key names for different body parts.
feature: The name of the body part feature to extract (e.g., 'nose', 'left', 'right').
frame_width: The width of the image frame.
frame_height: The height of the image frame.
Returns:
A list containing the landmark coordinates (as NumPy arrays) or raises an error if the feature is invalid.
"""
if feature == 'nose':
return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)
elif feature == 'left' or 'right':
shldr_coord = get_landmark_array(kp_results, dict_features[feature]['shoulder'], frame_width, frame_height)
elbow_coord = get_landmark_array(kp_results, dict_features[feature]['elbow'], frame_width, frame_height)
wrist_coord = get_landmark_array(kp_results, dict_features[feature]['wrist'], frame_width, frame_height)
hip_coord = get_landmark_array(kp_results, dict_features[feature]['hip'], frame_width, frame_height)
knee_coord = get_landmark_array(kp_results, dict_features[feature]['knee'], frame_width, frame_height)
ankle_coord = get_landmark_array(kp_results, dict_features[feature]['ankle'], frame_width, frame_height)
foot_coord = get_landmark_array(kp_results, dict_features[feature]['foot'], frame_width, frame_height)
return shldr_coord, elbow_coord, wrist_coord, hip_coord, knee_coord, ankle_coord, foot_coord
else:
raise ValueError("feature needs to be either 'nose', 'left' or 'right")
def get_mediapipe_pose(
"""
This function creates a MediaPipe Pose object for human pose estimation.
Args:
static_image_mode: Flag for processing a single static image (default: False).
model_complexity: Level of complexity for the pose model (default: 1).
smooth_landmarks: Enable smoothing of detected landmarks (default: True).
min_detection_confidence: Minimum confidence threshold for person detection (default: 0.5).
min_tracking_confidence: Minimum confidence threshold for pose tracking (default: 0.5).
Returns:
A MediaPipe Pose object.
"""
static_image_mode = False,
model_complexity = 1,
smooth_landmarks = True,
min_detection_confidence = 0.5,
min_tracking_confidence = 0.5
):
pose = mp.solutions.pose.Pose(
static_image_mode = static_image_mode,
model_complexity = model_complexity,
smooth_landmarks = smooth_landmarks,
min_detection_confidence = min_detection_confidence,
min_tracking_confidence = min_tracking_confidence
)
return pose |