File size: 7,292 Bytes
8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd e9a9c89 d28c822 e9a9c89 d28c822 e9a9c89 d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd e9a9c89 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
from skimage.segmentation import watershed
import matplotlib.pyplot as plt
import base64
from datetime import datetime
def apply_color_transformation(image, transform_type):
"""Apply different color transformations to the image"""
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if transform_type == "Original":
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
elif transform_type == "Grayscale":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif transform_type == "Binary":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
return binary
elif transform_type == "CLAHE":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
return image
def process_image(image, transform_type):
"""Process uploaded image and extract cell features"""
if image is None:
return None, None, None, None
# Store original image for color transformations
original_image = image.copy()
# Process image as before
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Basic preprocessing
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
blurred = cv2.medianBlur(enhanced, 5)
# [Rest of the processing code remains the same until visualization]
# Create enhanced visualization with timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
vis_img = image.copy()
contours = measure.find_contours(markers, 0.5)
# Draw contours and cell IDs with improved visibility
for contour in contours:
coords = contour.astype(int)
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 2) # Thicker lines
for region in measure.regionprops(markers):
if region.area >= 50:
y, x = region.centroid
# Add white background for better text visibility
cv2.putText(vis_img, str(region.label),
(int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255,255,255), 2) # White outline
cv2.putText(vis_img, str(region.label),
(int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 1) # Red text
# Add timestamp and cell count
cv2.putText(vis_img, f"Analyzed: {timestamp}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255,255,255), 2)
# Create summary plots with improved styling
plt.style.use('seaborn')
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
df = pd.DataFrame(features)
if not df.empty:
# Distribution plots
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
axes[0,0].set_title('Cell Size Distribution')
axes[0,0].set_xlabel('Area')
axes[0,0].set_ylabel('Count')
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
axes[0,1].set_title('Circularity Distribution')
axes[0,1].set_xlabel('Circularity')
axes[0,1].set_ylabel('Count')
# Scatter plots
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
alpha=0.6, c='purple')
axes[1,0].set_title('Circularity vs Intensity')
axes[1,0].set_xlabel('Circularity')
axes[1,0].set_ylabel('Mean Intensity')
# Add box plot
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
axes[1,1].set_title('Feature Distributions')
else:
for ax in axes.flat:
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
plt.tight_layout()
# Apply color transformation to original image
transformed_image = apply_color_transformation(original_image, transform_type)
return (
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
transformed_image,
fig,
df
)
# Create enhanced Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¬ Advanced Bioengineering Cell Analysis Tool
## Features
- π Automated cell detection and measurement
- π Comprehensive statistical analysis
- π¨ Multiple visualization options
- π₯ Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
- [GitHub](https://github.com/yourusername) <!-- Add your GitHub URL -->
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
download_btn = gr.Button(
"Download Results",
variant="secondary"
)
# Add footer
gr.Markdown("""
---
### π Notes
- Supported image formats: PNG, JPG, JPEG
- Minimum recommended resolution: 512x512 pixels
- Processing time varies with image size and cell count
*Last updated: January 2025*
""")
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch() |