File size: 5,274 Bytes
f765816
8312ddd
 
0d5b33e
f765816
 
b240133
 
7702060
0d5b33e
 
f765816
b240133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5b33e
b240133
 
 
0d5b33e
f765816
 
0d5b33e
b240133
f765816
0d5b33e
f765816
 
 
 
b240133
0d5b33e
b240133
0d5b33e
 
b240133
0d5b33e
b240133
0d5b33e
 
 
 
 
 
b240133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5b33e
b240133
 
 
 
 
 
 
f765816
b240133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd6596
b240133
0d5b33e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import cv2
import numpy as np
import pandas as pd
from collections import Counter
from ultralytics import YOLO
import plotly.express as px
import plotly.graph_objects as go

# Load the model
model = YOLO("best.pt")

def create_size_distribution_plot(df):
    """Create a box plot of cell sizes for each class."""
    fig = px.box(df, x="class_name", y="area", title="Cell Size Distribution by Type")
    fig.update_layout(
        xaxis_title="Cell Type",
        yaxis_title="Area (pixels²)",
        template="plotly_white"
    )
    return fig

def create_density_heatmap(df, image_shape):
    """Create a heatmap showing cell density."""
    heatmap = np.zeros(image_shape[:2])
    for _, row in df.iterrows():
        center_x = int((row['x_min'] + row['x_max']) / 2)
        center_y = int((row['y_min'] + row['y_max']) / 2)
        heatmap[max(0, center_y-20):min(image_shape[0], center_y+20),
                max(0, center_x-20):min(image_shape[1], center_x+20)] += 1
    
    fig = go.Figure(data=go.Heatmap(z=heatmap))
    fig.update_layout(title="Cell Density Heatmap")
    return fig

def process_image(image, conf_threshold=0.25):
    """Detect cells in the image, extract attributes, and return results."""
    if image is None:
        return None, "No image uploaded", None, None, None
    
    # Convert image to RGB
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    # Perform detection
    results = model.predict(source=image_rgb, imgsz=640, conf=conf_threshold)
    
    # Get annotated image
    annotated_img = results[0].plot()
    
    # Extract detection data
    detections = results[0].boxes.data if results[0].boxes is not None else []
    
    if len(detections) > 0:
        # Count detections
        class_names = [model.names[int(cls)] for cls in detections[:, 5]]
        count = Counter(class_names)
        detection_str = '\n'.join([f"{name}: {count[name]} cells detected" for name in count])
        
        # Create detailed DataFrame
        df = pd.DataFrame(detections.numpy(), columns=["x_min", "y_min", "x_max", "y_max", "confidence", "class"])
        df["class_name"] = df["class"].apply(lambda x: model.names[int(x)])
        df["width"] = df["x_max"] - df["x_min"]
        df["height"] = df["y_max"] - df["y_min"]
        df["area"] = df["width"] * df["height"]
        
        # Generate summary statistics
        summary = df.groupby("class_name").agg({
            'area': ['count', 'mean', 'std', 'min', 'max'],
            'confidence': 'mean'
        }).round(2)
        summary.columns = ['Count', 'Mean Area', 'Std Dev', 'Min Area', 'Max Area', 'Avg Confidence']
        summary = summary.reset_index()
        
        # Create visualizations
        size_dist_plot = create_size_distribution_plot(df)
        density_plot = create_density_heatmap(df, image.shape)
        
        return (
            annotated_img,
            detection_str,
            summary,
            size_dist_plot,
            density_plot
        )
    else:
        return (
            annotated_img,
            "No cells detected",
            pd.DataFrame(),
            None,
            None
        )

# Create Gradio interface with improved layout
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("""
    # Bioengineering Image Analysis Tool
    Upload microscopy images to detect and analyze cells using YOLOv10.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="numpy", label="Upload Image")
            conf_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.25,
                step=0.05,
                label="Confidence Threshold",
                info="Adjust detection sensitivity"
            )
            analyze_btn = gr.Button("Analyze Image", variant="primary")
        
        with gr.Column(scale=1):
            output_image = gr.Image(type="numpy", label="Detected Cells")
            detection_text = gr.Textbox(label="Detection Summary", lines=3)
    
    with gr.Row():
        with gr.Column(scale=1):
            stats_df = gr.Dataframe(
                label="Cell Statistics",
                headers=['Cell Type', 'Count', 'Mean Area', 'Std Dev', 'Min Area', 'Max Area', 'Avg Confidence']
            )
    
    with gr.Row():
        with gr.Column(scale=1):
            size_plot = gr.Plot(label="Cell Size Distribution")
        with gr.Column(scale=1):
            density_plot = gr.Plot(label="Cell Density Heatmap")
    
    # Handle button click
    analyze_btn.click(
        process_image,
        inputs=[input_image, conf_slider],
        outputs=[output_image, detection_text, stats_df, size_plot, density_plot]
    )
    
    gr.Markdown("""
    ### Instructions:
    1. Upload a microscopy image containing cells
    2. Adjust the confidence threshold if needed (higher values = stricter detection)
    3. Click 'Analyze Image' to process
    4. View results in the various panels:
        - Annotated image shows detected cells
        - Summary provides cell counts
        - Statistics table shows detailed measurements
        - Plots visualize size distribution and spatial density
    """)

# Launch the app
app.launch()