ibrahim313's picture
Update app.py
cd32abe verified
raw
history blame
9.29 kB
import cv2
import numpy as np
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime
def detect_blood_cells(image):
"""Optimized function for blood cell detection"""
# Convert to RGB if grayscale
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
# Optimized red color ranges for blood cells
lower_red1 = np.array([0, 100, 100]) # Increased saturation threshold
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([160, 100, 100]) # Increased saturation threshold
upper_red2 = np.array([180, 255, 255])
# Create masks for red color
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
mask = mask1 + mask2
# Enhanced noise removal
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
# Apply distance transform to separate touching cells
dist_transform = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
# Find connected components
_, markers = cv2.connectedComponents(sure_fg)
# Find contours with hierarchy to handle nested contours
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter contours based on area and circularity
filtered_contours = []
for contour in contours:
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
if perimeter == 0:
continue
circularity = 4 * np.pi * area / (perimeter * perimeter)
# Optimized thresholds for your specific images
if 500 < area < 2500 and circularity > 0.8: # Adjusted thresholds
filtered_contours.append(contour)
return filtered_contours, markers
def process_image(image, transform_type):
"""Process uploaded image and extract blood cell features"""
if image is None:
return None, None, None, None
try:
# Store original image
original_image = image.copy()
# Detect blood cells
contours, markers = detect_blood_cells(image)
# Extract features
features = []
for i, contour in enumerate(contours, 1):
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
circularity = 4 * np.pi * area / (perimeter * perimeter)
# Calculate centroid
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# Extract mean color intensity
mask = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.drawContours(mask, [contour], -1, 255, -1)
mean_intensity = cv2.mean(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), mask=mask)[0]
features.append({
'label': i,
'area': area,
'perimeter': perimeter,
'circularity': circularity,
'mean_intensity': mean_intensity,
'centroid_x': cx,
'centroid_y': cy
})
# Create visualization
vis_img = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Draw contours and labels with enhanced visibility
for feature in features:
i = feature['label'] - 1
cv2.drawContours(vis_img, contours, i, (0, 255, 0), 2)
# Add cell labels
x = feature['centroid_x']
y = feature['centroid_y']
# White outline
cv2.putText(vis_img, str(feature['label']),
(x-10, y), cv2.FONT_HERSHEY_SIMPLEX,
0.4, (255, 255, 255), 2)
# Red text
cv2.putText(vis_img, str(feature['label']),
(x-10, y), cv2.FONT_HERSHEY_SIMPLEX,
0.4, (0, 0, 255), 1)
# Add timestamp and cell count with better positioning
info_text = f"Analyzed: {timestamp} | Cells Detected: {len(features)}"
cv2.putText(vis_img, info_text,
(10, 25), cv2.FONT_HERSHEY_SIMPLEX,
0.6, (255, 255, 255), 2)
# Create analysis plots
plt.style.use('default')
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
df = pd.DataFrame(features)
if not df.empty:
# Distribution plots
axes[0,0].hist(df['area'], bins=20, color='skyblue', edgecolor='black')
axes[0,0].set_title('Cell Size Distribution')
axes[0,0].set_xlabel('Area (pixels)')
axes[0,0].set_ylabel('Count')
axes[0,0].grid(True, alpha=0.3)
axes[0,1].hist(df['circularity'], bins=20, color='lightgreen', edgecolor='black')
axes[0,1].set_title('Circularity Distribution')
axes[0,1].set_xlabel('Circularity')
axes[0,1].set_ylabel('Count')
axes[0,1].grid(True, alpha=0.3)
# Scatter plot
scatter = axes[1,0].scatter(df['area'], df['mean_intensity'],
c=df['circularity'], cmap='viridis',
alpha=0.6)
axes[1,0].set_title('Area vs Intensity')
axes[1,0].set_xlabel('Area')
axes[1,0].set_ylabel('Mean Intensity')
axes[1,0].grid(True, alpha=0.3)
plt.colorbar(scatter, ax=axes[1,0], label='Circularity')
# Box plot
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
axes[1,1].set_title('Feature Distributions')
axes[1,1].grid(True, alpha=0.3)
else:
for ax in axes.flat:
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
plt.tight_layout()
# Apply color transformation
transformed_image = apply_color_transformation(original_image, transform_type)
return (
vis_img,
transformed_image,
fig,
df
)
except Exception as e:
print(f"Error processing image: {str(e)}")
import traceback
traceback.print_exc()
return None, None, None, None
# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ”¬ Advanced Bioengineering Cell Analysis Tool
## Features
- πŸ” Automated cell detection and measurement
- πŸ“Š Comprehensive statistical analysis
- 🎨 Multiple visualization options
- πŸ“₯ Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()