File size: 9,285 Bytes
8312ddd
 
 
 
 
d28c822
3cf3c0d
 
cd32abe
3cf3c0d
 
 
 
 
 
 
cd32abe
 
3cf3c0d
cd32abe
3cf3c0d
 
cd32abe
3cf3c0d
 
 
cd32abe
 
 
 
3cf3c0d
 
cd32abe
 
 
 
3cf3c0d
cd32abe
 
 
 
 
8f2167b
cd32abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28c822
 
3cf3c0d
8f2167b
 
 
fc4ac67
cd32abe
fc4ac67
d28c822
3cf3c0d
cd32abe
a0d6076
8f2167b
a0d6076
3cf3c0d
 
cd32abe
 
 
 
 
 
 
 
 
 
 
 
 
3cf3c0d
cd32abe
 
 
 
 
 
 
 
 
a0d6076
8f2167b
 
3cf3c0d
a0d6076
cd32abe
8f2167b
cd32abe
 
3cf3c0d
 
 
 
8f2167b
 
cd32abe
 
8f2167b
 
cd32abe
 
8f2167b
cd32abe
 
 
 
 
8f2167b
cd32abe
c2460b3
fc4ac67
3cf3c0d
fc4ac67
 
 
 
c2460b3
fc4ac67
3cf3c0d
8f2167b
c2460b3
fc4ac67
c2460b3
fc4ac67
8f2167b
 
c2460b3
fc4ac67
3cf3c0d
cd32abe
 
 
 
3cf3c0d
cd32abe
c2460b3
cd32abe
fc4ac67
a0d6076
fc4ac67
8f2167b
c2460b3
fc4ac67
 
 
 
 
 
a0d6076
8f2167b
fc4ac67
 
3cf3c0d
8f2167b
fc4ac67
 
 
8f2167b
fc4ac67
8f2167b
c2460b3
cd32abe
8f2167b
8312ddd
3cf3c0d
 
8f2167b
d28c822
8312ddd
d28c822
 
 
 
 
 
 
 
 
 
 
8312ddd
 
 
d28c822
8312ddd
 
e9a9c89
8312ddd
d28c822
 
 
 
 
8312ddd
d28c822
 
 
8312ddd
 
d28c822
8312ddd
d28c822
8312ddd
 
 
d28c822
 
 
 
 
 
 
 
8312ddd
 
 
 
d28c822
 
 
8312ddd
 
 
 
 
 
d28c822
 
8312ddd
 
 
 
8f2167b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import cv2
import numpy as np
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime

def detect_blood_cells(image):
    """Optimized function for blood cell detection"""
    # Convert to RGB if grayscale
    if len(image.shape) == 2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    
    # Convert to HSV color space
    hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
    
    # Optimized red color ranges for blood cells
    lower_red1 = np.array([0, 100, 100])    # Increased saturation threshold
    upper_red1 = np.array([10, 255, 255])
    lower_red2 = np.array([160, 100, 100])  # Increased saturation threshold
    upper_red2 = np.array([180, 255, 255])
    
    # Create masks for red color
    mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
    mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
    mask = mask1 + mask2

    # Enhanced noise removal
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
    
    # Apply distance transform to separate touching cells
    dist_transform = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
    _, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
    sure_fg = np.uint8(sure_fg)
    
    # Find connected components
    _, markers = cv2.connectedComponents(sure_fg)
    
    # Find contours with hierarchy to handle nested contours
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Filter contours based on area and circularity
    filtered_contours = []
    for contour in contours:
        area = cv2.contourArea(contour)
        perimeter = cv2.arcLength(contour, True)
        if perimeter == 0:
            continue
            
        circularity = 4 * np.pi * area / (perimeter * perimeter)
        
        # Optimized thresholds for your specific images
        if 500 < area < 2500 and circularity > 0.8:  # Adjusted thresholds
            filtered_contours.append(contour)
    
    return filtered_contours, markers

def process_image(image, transform_type):
    """Process uploaded image and extract blood cell features"""
    if image is None:
        return None, None, None, None
    
    try:
        # Store original image
        original_image = image.copy()
        
        # Detect blood cells
        contours, markers = detect_blood_cells(image)
        
        # Extract features
        features = []
        for i, contour in enumerate(contours, 1):
            area = cv2.contourArea(contour)
            perimeter = cv2.arcLength(contour, True)
            circularity = 4 * np.pi * area / (perimeter * perimeter)
            
            # Calculate centroid
            M = cv2.moments(contour)
            if M["m00"] != 0:
                cx = int(M["m10"] / M["m00"])
                cy = int(M["m01"] / M["m00"])
                
                # Extract mean color intensity
                mask = np.zeros(image.shape[:2], dtype=np.uint8)
                cv2.drawContours(mask, [contour], -1, 255, -1)
                mean_intensity = cv2.mean(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), mask=mask)[0]
                
                features.append({
                    'label': i,
                    'area': area,
                    'perimeter': perimeter,
                    'circularity': circularity,
                    'mean_intensity': mean_intensity,
                    'centroid_x': cx,
                    'centroid_y': cy
                })
        
        # Create visualization
        vis_img = image.copy()
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Draw contours and labels with enhanced visibility
        for feature in features:
            i = feature['label'] - 1
            cv2.drawContours(vis_img, contours, i, (0, 255, 0), 2)
            
            # Add cell labels
            x = feature['centroid_x']
            y = feature['centroid_y']
            # White outline
            cv2.putText(vis_img, str(feature['label']), 
                       (x-10, y), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.4, (255, 255, 255), 2)
            # Red text
            cv2.putText(vis_img, str(feature['label']), 
                       (x-10, y), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.4, (0, 0, 255), 1)
        
        # Add timestamp and cell count with better positioning
        info_text = f"Analyzed: {timestamp} | Cells Detected: {len(features)}"
        cv2.putText(vis_img, info_text, 
                    (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 
                    0.6, (255, 255, 255), 2)
        
        # Create analysis plots
        plt.style.use('default')
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
        
        df = pd.DataFrame(features)
        if not df.empty:
            # Distribution plots
            axes[0,0].hist(df['area'], bins=20, color='skyblue', edgecolor='black')
            axes[0,0].set_title('Cell Size Distribution')
            axes[0,0].set_xlabel('Area (pixels)')
            axes[0,0].set_ylabel('Count')
            axes[0,0].grid(True, alpha=0.3)
            
            axes[0,1].hist(df['circularity'], bins=20, color='lightgreen', edgecolor='black')
            axes[0,1].set_title('Circularity Distribution')
            axes[0,1].set_xlabel('Circularity')
            axes[0,1].set_ylabel('Count')
            axes[0,1].grid(True, alpha=0.3)
            
            # Scatter plot
            scatter = axes[1,0].scatter(df['area'], df['mean_intensity'], 
                                      c=df['circularity'], cmap='viridis', 
                                      alpha=0.6)
            axes[1,0].set_title('Area vs Intensity')
            axes[1,0].set_xlabel('Area')
            axes[1,0].set_ylabel('Mean Intensity')
            axes[1,0].grid(True, alpha=0.3)
            plt.colorbar(scatter, ax=axes[1,0], label='Circularity')
            
            # Box plot
            df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
            axes[1,1].set_title('Feature Distributions')
            axes[1,1].grid(True, alpha=0.3)
        else:
            for ax in axes.flat:
                ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
        
        plt.tight_layout()
        
        # Apply color transformation
        transformed_image = apply_color_transformation(original_image, transform_type)
        
        return (
            vis_img,
            transformed_image,
            fig,
            df
        )
    
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, None, None, None



# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ”¬ Advanced Bioengineering Cell Analysis Tool
    
    ## Features
    - πŸ” Automated cell detection and measurement
    - πŸ“Š Comprehensive statistical analysis
    - 🎨 Multiple visualization options
    - πŸ“₯ Downloadable results
    
    ## Author
    - **Muhammad Ibrahim Qasmi**
    - [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(
                label="Upload Image",
                type="numpy"
            )
            transform_type = gr.Dropdown(
                choices=["Original", "Grayscale", "Binary", "CLAHE"],
                value="Original",
                label="Image Transform"
            )
            analyze_btn = gr.Button(
                "Analyze Image",
                variant="primary",
                size="lg"
            )
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("Analysis Results"):
                    output_image = gr.Image(
                        label="Detected Cells"
                    )
                    gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
                
                with gr.Tab("Image Transformations"):
                    transformed_image = gr.Image(
                        label="Transformed Image"
                    )
                    gr.Markdown("*Select different transformations from the dropdown menu*")
                
                with gr.Tab("Statistics"):
                    output_plot = gr.Plot(
                        label="Statistical Analysis"
                    )
                    gr.Markdown("*Hover over plots for detailed values*")
                
                with gr.Tab("Data"):
                    output_table = gr.DataFrame(
                        label="Cell Features"
                    )
    
    analyze_btn.click(
        fn=process_image,
        inputs=[input_image, transform_type],
        outputs=[output_image, transformed_image, output_plot, output_table]
    )

# Launch the demo
if __name__ == "__main__":
    demo.launch()