File size: 5,604 Bytes
92eab78
 
 
 
 
 
 
 
60ea201
92eab78
 
 
 
327ae61
4146450
 
92eab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1f33
37ac71c
 
 
92eab78
 
 
 
 
 
 
 
7fbf405
92eab78
 
 
f781451
92eab78
0c743a6
ebea54d
92eab78
02fde74
92eab78
d9110e2
b8e3567
d9110e2
 
2ebb2e1
02fde74
0c743a6
d9110e2
327ae61
d9110e2
 
92eab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f781451
b8fd0e2
c8b4788
92eab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1f33
92eab78
c084ea1
92eab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import numpy as np
import pickle
from src.DetectLM import DetectLM
from src.PerplexityEvaluator import PerplexityEvaluator
from src.PrepareArticles import PrepareArticles 
from src.fit_survival_function import fit_per_length_survival_function
from glob import glob
import spacy
import re
import os
import gc

logging.basicConfig(level=logging.INFO)

def read_all_csv_files(pattern):
    df = pd.DataFrame()
    print(pattern)
    for f in glob(pattern):
        df = pd.concat([df, pd.read_csv(f)])
    return df

def get_survival_function(df, G=101):
    """
    Returns a survival function for every sentence length in tokens.

    Args:
    :df:  data frame with columns 'response' and 'length'
    :G:   number of interpolation points
    
    Return:
        bivariate function (length, responce) -> (0,1)

    """
    assert not df.empty
    value_name = "response" if "response" in df.columns else "logloss"

    df1 = df[~df[value_name].isna()]
    ll = df1['length']
    xx1 = df1[value_name]
    return fit_per_length_survival_function(ll, xx1, log_space=True, G=G)

def mark_edits_remove_tags(chunks, tag="edit"):
    text_chunks = chunks['text']
    edits = []
    for i,text in enumerate(text_chunks):
        chunk_text = re.findall(rf"<{tag}>(.+)</{tag}>", text)
        if len(chunk_text) > 0:
            import pdb; pdb.set_trace()
            chunks['text'][i] = chunk_text[0]
            chunks['length'][i] -= 2
            edits.append(True)
        else:
            edits.append(False)

    return chunks, edits

def get_null_data(model_name, topic):
    data = None
    try:
        file = open(f'nullData/{model_name}_{topic}.pkl', 'rb')
        data = pickle.load(file)
    except:
        pass

    return data

def get_threshold_obj(model_name, topic):
    threshold = None
    try:
        file = open('threshold_obj.pkl', 'rb')
        threshold_obj = pickle.load(file)
        threshold = threshold_obj[model_name][topic]
    except:
        pass

    return threshold

def detect_human_text(model_name, topic, threshold, text):

    torch.cuda.empty_cache()
    gc.collect()
    
    # Get null data
    print('Get null data')
    df_null = get_null_data(model_name, topic)
    if 'num' in df_null.columns:
        df_null = df_null[df_null.num > 1]
    
    # Get survival function
    print('Get survival function')
    pval_functions = get_survival_function(df_null, G=43)

    min_tokens_per_sentence = 10
    max_tokens_per_sentence = 50

    cache_dir_tokenizer = f"/data/cacheHuggingface/{model_name}/tokenizer"
    
    # Init model
    print('Init tokenizer')
    lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
    tokenizer = AutoTokenizer.from_pretrained(cache_dir_tokenizer) #lm_name, cache_dir=cache_dir_tokenizer
    
    # print("Save tokenizer")
    # tokenizer.save_pretrained(cache_dir_tokenizer)
    
    print('Init model')
    cache_dir_model = f"/data/cacheHuggingface/{model_name}/model"
    model = AutoModelForCausalLM.from_pretrained(cache_dir_model) #lm_name, cache_dir=cache_dir_model

    # print("Save model")
    # model.save_pretrained(cache_dir_model)
    
    print('Init PerplexityEvaluator')
    sentence_detector = PerplexityEvaluator(model, tokenizer)

    if torch.backends.mps.is_available():
        device = 'mps'
    elif torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    print(f'device {device}')
    model.to(device)

    print('Init DetectLM')
    detector = DetectLM(sentence_detector, pval_functions,
                        min_len=min_tokens_per_sentence,
                        max_len=max_tokens_per_sentence,
                        length_limit_policy='max_available',
                        HC_type='not stbl',
                        gamma=0.15,
                        ignore_first_sentence= False
                        )

    # Convert text to object
    print('Analyze text')
    article_obj = get_article_obj(text)
    parser = PrepareArticles(article_obj, min_tokens=min_tokens_per_sentence, max_tokens=max_tokens_per_sentence)
    chunks = parser(combined=False)

    # Go over all the document
    for i in range(len(chunks['text'])):
        print(chunks['text'][i])
        # for p,v in enumerate(chunks['text'][i]):
        #     print(f'{p}: {v}')
        res = detector(chunks['text'][i], chunks['context'][i], dashboard=None)

        # print(f"Num of Edits (rate) = {np.sum(df['tag'] == '<edit>')} ({edit_rate})")
        # print(f"HC = {res['HC']}")
        # print(f"Fisher = {res['fisher']}")
        # print(f"Fisher (chisquared pvalue) = {res['fisher_pvalue']}")

        results = res['HC']
    
    # threshold = get_threshold_obj(model_name, topic)
    print(f"threshold: {threshold}, results: {results}")
    return round((results / threshold) - 1, 2), round(results, 2), res['sentences']

# Convert article text into object
def get_article_obj(text):
    # Init article object
    article_obj = {
        'sub_titles': [{
            'sentences': []
        }]
    }
    
    nlp = spacy.load("en_core_web_sm")  # Load model

    for line in text.split('\n'):
        doc = nlp(line) # Analyze text
        sentences = [sent.text for sent in doc.sents if len(sent) >= 10] # Split it by sentence
        for sentence in sentences:
            sentence = re.sub(r' +', ' ', sentence) # Remove duplicate spaces
            article_obj['sub_titles'][0]['sentences'].append({'sentence': sentence})

    return article_obj