File size: 1,889 Bytes
ac47d9a
 
 
 
728e599
ac47d9a
b5e1894
ac47d9a
b5e1894
 
ac47d9a
 
b5e1894
 
ac47d9a
0ab7ce5
ac47d9a
 
 
 
 
 
b5e1894
 
ac47d9a
b5e1894
 
ac47d9a
 
 
 
b5e1894
ac47d9a
 
b5e1894
 
 
 
 
 
 
ac47d9a
0ab7ce5
ac47d9a
7b42316
728e599
 
7b42316
728e599
7b42316
b5e1894
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone

device = 'cpu'

pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')

index_name = 'abstractive-question-answering'
index = pc.Index(index_name)

def load_models():
    print("Loading models...")
    
    retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
    tokenizer = T5Tokenizer.from_pretrained('t5-small')
    generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)

    return retriever, generator, tokenizer

retriever, generator, tokenizer = load_models()

def process_query(query):    
    xq = retriever.encode([query]).tolist()
    xc = index.query(vector=xq, top_k=1, include_metadata=True)
    
    print("Pinecone response:", xc)

    if 'matches' in xc and isinstance(xc['matches'], list):
        context = [m['metadata']['Output'] for m in xc['matches']]
        context_str = " ".join(context)
        formatted_query = f"answer the question: {query} context: {context_str}"

    # Generate answer using T5 model
    output_text = context_str
    if len(output_text.splitlines()) > 5:
        return output_text

    if output_text.lower() == "none":
        return "The topic is not covered in the student manual."

    inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
    ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
    answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry']
    
    if any(keyword in answer.lower() for keyword in nli_keywords):
        return context_str  

    return answer